L(s) = 1 | + (0.455 + 1.67i)3-s + (0.240 + 0.416i)5-s + (1.92 − 1.81i)7-s + (−2.58 + 1.52i)9-s + (1.69 − 2.92i)11-s + (−2.86 + 4.95i)13-s + (−0.587 + 0.592i)15-s + (2.75 + 4.77i)17-s + (−2.18 + 3.77i)19-s + (3.90 + 2.39i)21-s + (1.81 + 3.14i)23-s + (2.38 − 4.12i)25-s + (−3.71 − 3.62i)27-s + (1.53 + 2.65i)29-s + 9.34·31-s + ⋯ |
L(s) = 1 | + (0.262 + 0.964i)3-s + (0.107 + 0.186i)5-s + (0.728 − 0.684i)7-s + (−0.861 + 0.507i)9-s + (0.509 − 0.882i)11-s + (−0.793 + 1.37i)13-s + (−0.151 + 0.152i)15-s + (0.668 + 1.15i)17-s + (−0.500 + 0.866i)19-s + (0.852 + 0.522i)21-s + (0.378 + 0.654i)23-s + (0.476 − 0.825i)25-s + (−0.715 − 0.698i)27-s + (0.284 + 0.492i)29-s + 1.67·31-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(0.0464−0.998i)Λ(2−s)
Λ(s)=(=(1008s/2ΓC(s+1/2)L(s)(0.0464−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
0.0464−0.998i
|
Analytic conductor: |
8.04892 |
Root analytic conductor: |
2.83706 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(625,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :1/2), 0.0464−0.998i)
|
Particular Values
L(1) |
≈ |
1.813895602 |
L(21) |
≈ |
1.813895602 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.455−1.67i)T |
| 7 | 1+(−1.92+1.81i)T |
good | 5 | 1+(−0.240−0.416i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−1.69+2.92i)T+(−5.5−9.52i)T2 |
| 13 | 1+(2.86−4.95i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−2.75−4.77i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.18−3.77i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.81−3.14i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.53−2.65i)T+(−14.5+25.1i)T2 |
| 31 | 1−9.34T+31T2 |
| 37 | 1+(−1.48+2.57i)T+(−18.5−32.0i)T2 |
| 41 | 1+(6.29−10.9i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.90+3.30i)T+(−21.5+37.2i)T2 |
| 47 | 1−3.76T+47T2 |
| 53 | 1+(−5.57−9.66i)T+(−26.5+45.8i)T2 |
| 59 | 1+8.42T+59T2 |
| 61 | 1+7.28T+61T2 |
| 67 | 1+2.57T+67T2 |
| 71 | 1−3.94T+71T2 |
| 73 | 1+(0.862+1.49i)T+(−36.5+63.2i)T2 |
| 79 | 1−5.59T+79T2 |
| 83 | 1+(−0.119−0.206i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−0.648+1.12i)T+(−44.5−77.0i)T2 |
| 97 | 1+(7.02+12.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26511759366407329704742720457, −9.404300681586833325543114908514, −8.498864110904275351096409724050, −7.940718784592278903785366981487, −6.71348062441072788540461140148, −5.84359195342085277354651272868, −4.63826935310822625773656127044, −4.09803833214536758597549854441, −3.02981543629401483000974866683, −1.56134398541828787041858788398,
0.865625624746330389148849504103, 2.26235885615271799936390518290, 2.99632622701526656872941174634, 4.77043760239972407306643435096, 5.34193224984671962494042682832, 6.52981983573093534418968042251, 7.32026676370057469313743825303, 8.039706021394538490868375877987, 8.822179763031672494140598270309, 9.595398280280161780827852934760