L(s) = 1 | + (0.455 + 1.67i)3-s + (0.240 + 0.416i)5-s + (1.92 − 1.81i)7-s + (−2.58 + 1.52i)9-s + (1.69 − 2.92i)11-s + (−2.86 + 4.95i)13-s + (−0.587 + 0.592i)15-s + (2.75 + 4.77i)17-s + (−2.18 + 3.77i)19-s + (3.90 + 2.39i)21-s + (1.81 + 3.14i)23-s + (2.38 − 4.12i)25-s + (−3.71 − 3.62i)27-s + (1.53 + 2.65i)29-s + 9.34·31-s + ⋯ |
L(s) = 1 | + (0.262 + 0.964i)3-s + (0.107 + 0.186i)5-s + (0.728 − 0.684i)7-s + (−0.861 + 0.507i)9-s + (0.509 − 0.882i)11-s + (−0.793 + 1.37i)13-s + (−0.151 + 0.152i)15-s + (0.668 + 1.15i)17-s + (−0.500 + 0.866i)19-s + (0.852 + 0.522i)21-s + (0.378 + 0.654i)23-s + (0.476 − 0.825i)25-s + (−0.715 − 0.698i)27-s + (0.284 + 0.492i)29-s + 1.67·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0464 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0464 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.813895602\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.813895602\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.455 - 1.67i)T \) |
| 7 | \( 1 + (-1.92 + 1.81i)T \) |
good | 5 | \( 1 + (-0.240 - 0.416i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.69 + 2.92i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.86 - 4.95i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.75 - 4.77i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.18 - 3.77i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.81 - 3.14i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.53 - 2.65i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 9.34T + 31T^{2} \) |
| 37 | \( 1 + (-1.48 + 2.57i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (6.29 - 10.9i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.90 + 3.30i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.76T + 47T^{2} \) |
| 53 | \( 1 + (-5.57 - 9.66i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 8.42T + 59T^{2} \) |
| 61 | \( 1 + 7.28T + 61T^{2} \) |
| 67 | \( 1 + 2.57T + 67T^{2} \) |
| 71 | \( 1 - 3.94T + 71T^{2} \) |
| 73 | \( 1 + (0.862 + 1.49i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 5.59T + 79T^{2} \) |
| 83 | \( 1 + (-0.119 - 0.206i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.648 + 1.12i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7.02 + 12.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26511759366407329704742720457, −9.404300681586833325543114908514, −8.498864110904275351096409724050, −7.940718784592278903785366981487, −6.71348062441072788540461140148, −5.84359195342085277354651272868, −4.63826935310822625773656127044, −4.09803833214536758597549854441, −3.02981543629401483000974866683, −1.56134398541828787041858788398,
0.865625624746330389148849504103, 2.26235885615271799936390518290, 2.99632622701526656872941174634, 4.77043760239972407306643435096, 5.34193224984671962494042682832, 6.52981983573093534418968042251, 7.32026676370057469313743825303, 8.039706021394538490868375877987, 8.822179763031672494140598270309, 9.595398280280161780827852934760