L(s) = 1 | + (−1.11 + 0.866i)2-s + (0.496 − 1.93i)4-s + (0.925 + 0.925i)5-s + 7-s + (1.12 + 2.59i)8-s + (−1.83 − 0.231i)10-s + (−1.72 + 1.72i)11-s + (0.328 + 0.328i)13-s + (−1.11 + 0.866i)14-s + (−3.50 − 1.92i)16-s + 2.34i·17-s + (−1.77 + 1.77i)19-s + (2.25 − 1.33i)20-s + (0.431 − 3.42i)22-s + 6.17i·23-s + ⋯ |
L(s) = 1 | + (−0.790 + 0.613i)2-s + (0.248 − 0.968i)4-s + (0.413 + 0.413i)5-s + 0.377·7-s + (0.397 + 0.917i)8-s + (−0.580 − 0.0732i)10-s + (−0.519 + 0.519i)11-s + (0.0910 + 0.0910i)13-s + (−0.298 + 0.231i)14-s + (−0.876 − 0.481i)16-s + 0.567i·17-s + (−0.408 + 0.408i)19-s + (0.503 − 0.298i)20-s + (0.0920 − 0.729i)22-s + 1.28i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.484 - 0.874i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.484 - 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9813279082\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9813279082\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.11 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 5 | \( 1 + (-0.925 - 0.925i)T + 5iT^{2} \) |
| 11 | \( 1 + (1.72 - 1.72i)T - 11iT^{2} \) |
| 13 | \( 1 + (-0.328 - 0.328i)T + 13iT^{2} \) |
| 17 | \( 1 - 2.34iT - 17T^{2} \) |
| 19 | \( 1 + (1.77 - 1.77i)T - 19iT^{2} \) |
| 23 | \( 1 - 6.17iT - 23T^{2} \) |
| 29 | \( 1 + (0.122 - 0.122i)T - 29iT^{2} \) |
| 31 | \( 1 - 1.74iT - 31T^{2} \) |
| 37 | \( 1 + (1.68 - 1.68i)T - 37iT^{2} \) |
| 41 | \( 1 - 2.88T + 41T^{2} \) |
| 43 | \( 1 + (-2.77 - 2.77i)T + 43iT^{2} \) |
| 47 | \( 1 - 5.92T + 47T^{2} \) |
| 53 | \( 1 + (0.973 + 0.973i)T + 53iT^{2} \) |
| 59 | \( 1 + (8.33 - 8.33i)T - 59iT^{2} \) |
| 61 | \( 1 + (-4.28 - 4.28i)T + 61iT^{2} \) |
| 67 | \( 1 + (-1.78 + 1.78i)T - 67iT^{2} \) |
| 71 | \( 1 - 8.57iT - 71T^{2} \) |
| 73 | \( 1 - 6.41iT - 73T^{2} \) |
| 79 | \( 1 - 5.38iT - 79T^{2} \) |
| 83 | \( 1 + (3.46 + 3.46i)T + 83iT^{2} \) |
| 89 | \( 1 + 1.51T + 89T^{2} \) |
| 97 | \( 1 - 15.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18658026703153678672247825732, −9.411826990770720287004952465904, −8.500938398913285672483208772001, −7.75359700650830395804037085675, −7.00217123298436270326453993737, −6.06934810312922266953256161598, −5.36344352659258516242080191694, −4.21498837978008659273819010052, −2.56169855995675554366514275335, −1.49103427458192205789102453506,
0.59417842478559522339769354995, 2.00424101805755211644631063306, 2.99526972332116903035987840375, 4.26630720537816715604582362621, 5.27298564009275931173733443904, 6.41802054396254810763899103740, 7.44094319949178520083936129692, 8.236538911382548770283012303780, 8.964617007190674413246192911717, 9.585343294082858902506494812111