L(s) = 1 | + (−1.11 + 0.866i)2-s + (0.496 − 1.93i)4-s + (0.925 + 0.925i)5-s + 7-s + (1.12 + 2.59i)8-s + (−1.83 − 0.231i)10-s + (−1.72 + 1.72i)11-s + (0.328 + 0.328i)13-s + (−1.11 + 0.866i)14-s + (−3.50 − 1.92i)16-s + 2.34i·17-s + (−1.77 + 1.77i)19-s + (2.25 − 1.33i)20-s + (0.431 − 3.42i)22-s + 6.17i·23-s + ⋯ |
L(s) = 1 | + (−0.790 + 0.613i)2-s + (0.248 − 0.968i)4-s + (0.413 + 0.413i)5-s + 0.377·7-s + (0.397 + 0.917i)8-s + (−0.580 − 0.0732i)10-s + (−0.519 + 0.519i)11-s + (0.0910 + 0.0910i)13-s + (−0.298 + 0.231i)14-s + (−0.876 − 0.481i)16-s + 0.567i·17-s + (−0.408 + 0.408i)19-s + (0.503 − 0.298i)20-s + (0.0920 − 0.729i)22-s + 1.28i·23-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(−0.484−0.874i)Λ(2−s)
Λ(s)=(=(1008s/2ΓC(s+1/2)L(s)(−0.484−0.874i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
−0.484−0.874i
|
Analytic conductor: |
8.04892 |
Root analytic conductor: |
2.83706 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(323,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :1/2), −0.484−0.874i)
|
Particular Values
L(1) |
≈ |
0.9813279082 |
L(21) |
≈ |
0.9813279082 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.11−0.866i)T |
| 3 | 1 |
| 7 | 1−T |
good | 5 | 1+(−0.925−0.925i)T+5iT2 |
| 11 | 1+(1.72−1.72i)T−11iT2 |
| 13 | 1+(−0.328−0.328i)T+13iT2 |
| 17 | 1−2.34iT−17T2 |
| 19 | 1+(1.77−1.77i)T−19iT2 |
| 23 | 1−6.17iT−23T2 |
| 29 | 1+(0.122−0.122i)T−29iT2 |
| 31 | 1−1.74iT−31T2 |
| 37 | 1+(1.68−1.68i)T−37iT2 |
| 41 | 1−2.88T+41T2 |
| 43 | 1+(−2.77−2.77i)T+43iT2 |
| 47 | 1−5.92T+47T2 |
| 53 | 1+(0.973+0.973i)T+53iT2 |
| 59 | 1+(8.33−8.33i)T−59iT2 |
| 61 | 1+(−4.28−4.28i)T+61iT2 |
| 67 | 1+(−1.78+1.78i)T−67iT2 |
| 71 | 1−8.57iT−71T2 |
| 73 | 1−6.41iT−73T2 |
| 79 | 1−5.38iT−79T2 |
| 83 | 1+(3.46+3.46i)T+83iT2 |
| 89 | 1+1.51T+89T2 |
| 97 | 1−15.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18658026703153678672247825732, −9.411826990770720287004952465904, −8.500938398913285672483208772001, −7.75359700650830395804037085675, −7.00217123298436270326453993737, −6.06934810312922266953256161598, −5.36344352659258516242080191694, −4.21498837978008659273819010052, −2.56169855995675554366514275335, −1.49103427458192205789102453506,
0.59417842478559522339769354995, 2.00424101805755211644631063306, 2.99526972332116903035987840375, 4.26630720537816715604582362621, 5.27298564009275931173733443904, 6.41802054396254810763899103740, 7.44094319949178520083936129692, 8.236538911382548770283012303780, 8.964617007190674413246192911717, 9.585343294082858902506494812111