Properties

Label 2-1008-48.11-c1-0-6
Degree $2$
Conductor $1008$
Sign $0.0154 - 0.999i$
Analytic cond. $8.04892$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.37 + 0.347i)2-s + (1.75 − 0.952i)4-s + (0.111 − 0.111i)5-s + 7-s + (−2.07 + 1.91i)8-s + (−0.114 + 0.191i)10-s + (−3.61 − 3.61i)11-s + (−1.94 + 1.94i)13-s + (−1.37 + 0.347i)14-s + (2.18 − 3.35i)16-s + 4.79i·17-s + (3.03 + 3.03i)19-s + (0.0897 − 0.302i)20-s + (6.20 + 3.69i)22-s + 6.58i·23-s + ⋯
L(s)  = 1  + (−0.969 + 0.245i)2-s + (0.879 − 0.476i)4-s + (0.0498 − 0.0498i)5-s + 0.377·7-s + (−0.735 + 0.677i)8-s + (−0.0360 + 0.0605i)10-s + (−1.08 − 1.08i)11-s + (−0.539 + 0.539i)13-s + (−0.366 + 0.0928i)14-s + (0.546 − 0.837i)16-s + 1.16i·17-s + (0.695 + 0.695i)19-s + (0.0200 − 0.0675i)20-s + (1.32 + 0.788i)22-s + 1.37i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0154 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0154 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.0154 - 0.999i$
Analytic conductor: \(8.04892\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (827, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ 0.0154 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7744887703\)
\(L(\frac12)\) \(\approx\) \(0.7744887703\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.37 - 0.347i)T \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 + (-0.111 + 0.111i)T - 5iT^{2} \)
11 \( 1 + (3.61 + 3.61i)T + 11iT^{2} \)
13 \( 1 + (1.94 - 1.94i)T - 13iT^{2} \)
17 \( 1 - 4.79iT - 17T^{2} \)
19 \( 1 + (-3.03 - 3.03i)T + 19iT^{2} \)
23 \( 1 - 6.58iT - 23T^{2} \)
29 \( 1 + (1.53 + 1.53i)T + 29iT^{2} \)
31 \( 1 + 3.26iT - 31T^{2} \)
37 \( 1 + (-1.05 - 1.05i)T + 37iT^{2} \)
41 \( 1 - 1.26T + 41T^{2} \)
43 \( 1 + (-0.484 + 0.484i)T - 43iT^{2} \)
47 \( 1 - 11.2T + 47T^{2} \)
53 \( 1 + (4.00 - 4.00i)T - 53iT^{2} \)
59 \( 1 + (-7.61 - 7.61i)T + 59iT^{2} \)
61 \( 1 + (-5.44 + 5.44i)T - 61iT^{2} \)
67 \( 1 + (0.897 + 0.897i)T + 67iT^{2} \)
71 \( 1 - 2.83iT - 71T^{2} \)
73 \( 1 - 15.7iT - 73T^{2} \)
79 \( 1 - 15.4iT - 79T^{2} \)
83 \( 1 + (-7.57 + 7.57i)T - 83iT^{2} \)
89 \( 1 + 13.1T + 89T^{2} \)
97 \( 1 + 10.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02737834158352849801042771844, −9.359360246011536244632598431928, −8.399552043671186465016374567640, −7.81770338149171083192405208085, −7.09588859333816108986826048746, −5.74832322088696928189830611033, −5.48219078375758223821830742236, −3.79330930167834979637158943131, −2.53688541688148165837219782932, −1.30596188196439714017395950010, 0.50709535867164819431240487624, 2.24890995147008382145191156539, 2.88216046519340911008301673706, 4.54259401650770868063519100515, 5.38371051337148325894580992278, 6.76764423801677947548310608416, 7.40448190731826674014299681753, 8.072478502729549054819099771362, 9.015604637665562922026068494919, 9.835446798491007958656056804135

Graph of the $Z$-function along the critical line