L(s) = 1 | + (−1.37 + 0.347i)2-s + (1.75 − 0.952i)4-s + (0.111 − 0.111i)5-s + 7-s + (−2.07 + 1.91i)8-s + (−0.114 + 0.191i)10-s + (−3.61 − 3.61i)11-s + (−1.94 + 1.94i)13-s + (−1.37 + 0.347i)14-s + (2.18 − 3.35i)16-s + 4.79i·17-s + (3.03 + 3.03i)19-s + (0.0897 − 0.302i)20-s + (6.20 + 3.69i)22-s + 6.58i·23-s + ⋯ |
L(s) = 1 | + (−0.969 + 0.245i)2-s + (0.879 − 0.476i)4-s + (0.0498 − 0.0498i)5-s + 0.377·7-s + (−0.735 + 0.677i)8-s + (−0.0360 + 0.0605i)10-s + (−1.08 − 1.08i)11-s + (−0.539 + 0.539i)13-s + (−0.366 + 0.0928i)14-s + (0.546 − 0.837i)16-s + 1.16i·17-s + (0.695 + 0.695i)19-s + (0.0200 − 0.0675i)20-s + (1.32 + 0.788i)22-s + 1.37i·23-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(0.0154−0.999i)Λ(2−s)
Λ(s)=(=(1008s/2ΓC(s+1/2)L(s)(0.0154−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
0.0154−0.999i
|
Analytic conductor: |
8.04892 |
Root analytic conductor: |
2.83706 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(827,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :1/2), 0.0154−0.999i)
|
Particular Values
L(1) |
≈ |
0.7744887703 |
L(21) |
≈ |
0.7744887703 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.37−0.347i)T |
| 3 | 1 |
| 7 | 1−T |
good | 5 | 1+(−0.111+0.111i)T−5iT2 |
| 11 | 1+(3.61+3.61i)T+11iT2 |
| 13 | 1+(1.94−1.94i)T−13iT2 |
| 17 | 1−4.79iT−17T2 |
| 19 | 1+(−3.03−3.03i)T+19iT2 |
| 23 | 1−6.58iT−23T2 |
| 29 | 1+(1.53+1.53i)T+29iT2 |
| 31 | 1+3.26iT−31T2 |
| 37 | 1+(−1.05−1.05i)T+37iT2 |
| 41 | 1−1.26T+41T2 |
| 43 | 1+(−0.484+0.484i)T−43iT2 |
| 47 | 1−11.2T+47T2 |
| 53 | 1+(4.00−4.00i)T−53iT2 |
| 59 | 1+(−7.61−7.61i)T+59iT2 |
| 61 | 1+(−5.44+5.44i)T−61iT2 |
| 67 | 1+(0.897+0.897i)T+67iT2 |
| 71 | 1−2.83iT−71T2 |
| 73 | 1−15.7iT−73T2 |
| 79 | 1−15.4iT−79T2 |
| 83 | 1+(−7.57+7.57i)T−83iT2 |
| 89 | 1+13.1T+89T2 |
| 97 | 1+10.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02737834158352849801042771844, −9.359360246011536244632598431928, −8.399552043671186465016374567640, −7.81770338149171083192405208085, −7.09588859333816108986826048746, −5.74832322088696928189830611033, −5.48219078375758223821830742236, −3.79330930167834979637158943131, −2.53688541688148165837219782932, −1.30596188196439714017395950010,
0.50709535867164819431240487624, 2.24890995147008382145191156539, 2.88216046519340911008301673706, 4.54259401650770868063519100515, 5.38371051337148325894580992278, 6.76764423801677947548310608416, 7.40448190731826674014299681753, 8.072478502729549054819099771362, 9.015604637665562922026068494919, 9.835446798491007958656056804135