L(s) = 1 | + (−1.37 + 0.347i)2-s + (1.75 − 0.952i)4-s + (0.111 − 0.111i)5-s + 7-s + (−2.07 + 1.91i)8-s + (−0.114 + 0.191i)10-s + (−3.61 − 3.61i)11-s + (−1.94 + 1.94i)13-s + (−1.37 + 0.347i)14-s + (2.18 − 3.35i)16-s + 4.79i·17-s + (3.03 + 3.03i)19-s + (0.0897 − 0.302i)20-s + (6.20 + 3.69i)22-s + 6.58i·23-s + ⋯ |
L(s) = 1 | + (−0.969 + 0.245i)2-s + (0.879 − 0.476i)4-s + (0.0498 − 0.0498i)5-s + 0.377·7-s + (−0.735 + 0.677i)8-s + (−0.0360 + 0.0605i)10-s + (−1.08 − 1.08i)11-s + (−0.539 + 0.539i)13-s + (−0.366 + 0.0928i)14-s + (0.546 − 0.837i)16-s + 1.16i·17-s + (0.695 + 0.695i)19-s + (0.0200 − 0.0675i)20-s + (1.32 + 0.788i)22-s + 1.37i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0154 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0154 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7744887703\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7744887703\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.37 - 0.347i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 5 | \( 1 + (-0.111 + 0.111i)T - 5iT^{2} \) |
| 11 | \( 1 + (3.61 + 3.61i)T + 11iT^{2} \) |
| 13 | \( 1 + (1.94 - 1.94i)T - 13iT^{2} \) |
| 17 | \( 1 - 4.79iT - 17T^{2} \) |
| 19 | \( 1 + (-3.03 - 3.03i)T + 19iT^{2} \) |
| 23 | \( 1 - 6.58iT - 23T^{2} \) |
| 29 | \( 1 + (1.53 + 1.53i)T + 29iT^{2} \) |
| 31 | \( 1 + 3.26iT - 31T^{2} \) |
| 37 | \( 1 + (-1.05 - 1.05i)T + 37iT^{2} \) |
| 41 | \( 1 - 1.26T + 41T^{2} \) |
| 43 | \( 1 + (-0.484 + 0.484i)T - 43iT^{2} \) |
| 47 | \( 1 - 11.2T + 47T^{2} \) |
| 53 | \( 1 + (4.00 - 4.00i)T - 53iT^{2} \) |
| 59 | \( 1 + (-7.61 - 7.61i)T + 59iT^{2} \) |
| 61 | \( 1 + (-5.44 + 5.44i)T - 61iT^{2} \) |
| 67 | \( 1 + (0.897 + 0.897i)T + 67iT^{2} \) |
| 71 | \( 1 - 2.83iT - 71T^{2} \) |
| 73 | \( 1 - 15.7iT - 73T^{2} \) |
| 79 | \( 1 - 15.4iT - 79T^{2} \) |
| 83 | \( 1 + (-7.57 + 7.57i)T - 83iT^{2} \) |
| 89 | \( 1 + 13.1T + 89T^{2} \) |
| 97 | \( 1 + 10.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02737834158352849801042771844, −9.359360246011536244632598431928, −8.399552043671186465016374567640, −7.81770338149171083192405208085, −7.09588859333816108986826048746, −5.74832322088696928189830611033, −5.48219078375758223821830742236, −3.79330930167834979637158943131, −2.53688541688148165837219782932, −1.30596188196439714017395950010,
0.50709535867164819431240487624, 2.24890995147008382145191156539, 2.88216046519340911008301673706, 4.54259401650770868063519100515, 5.38371051337148325894580992278, 6.76764423801677947548310608416, 7.40448190731826674014299681753, 8.072478502729549054819099771362, 9.015604637665562922026068494919, 9.835446798491007958656056804135