Properties

Label 2-1008-1.1-c5-0-64
Degree $2$
Conductor $1008$
Sign $-1$
Analytic cond. $161.666$
Root an. cond. $12.7148$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.7·5-s + 49·7-s + 58.5·11-s + 1.17e3·13-s − 1.49e3·17-s − 498.·19-s − 1.88e3·23-s − 2.90e3·25-s − 1.91e3·29-s − 794.·31-s + 721.·35-s + 2.98e3·37-s − 1.19e4·41-s − 9.82e3·43-s − 1.96e4·47-s + 2.40e3·49-s + 1.98e4·53-s + 862.·55-s + 3.58e4·59-s + 4.99e4·61-s + 1.73e4·65-s − 4.81e4·67-s + 7.71e4·71-s − 5.96e4·73-s + 2.86e3·77-s − 6.07e4·79-s − 4.61e4·83-s + ⋯
L(s)  = 1  + 0.263·5-s + 0.377·7-s + 0.145·11-s + 1.93·13-s − 1.25·17-s − 0.317·19-s − 0.744·23-s − 0.930·25-s − 0.422·29-s − 0.148·31-s + 0.0995·35-s + 0.358·37-s − 1.10·41-s − 0.809·43-s − 1.29·47-s + 0.142·49-s + 0.971·53-s + 0.0384·55-s + 1.34·59-s + 1.71·61-s + 0.509·65-s − 1.31·67-s + 1.81·71-s − 1.31·73-s + 0.0551·77-s − 1.09·79-s − 0.735·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(161.666\)
Root analytic conductor: \(12.7148\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1008,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - 49T \)
good5 \( 1 - 14.7T + 3.12e3T^{2} \)
11 \( 1 - 58.5T + 1.61e5T^{2} \)
13 \( 1 - 1.17e3T + 3.71e5T^{2} \)
17 \( 1 + 1.49e3T + 1.41e6T^{2} \)
19 \( 1 + 498.T + 2.47e6T^{2} \)
23 \( 1 + 1.88e3T + 6.43e6T^{2} \)
29 \( 1 + 1.91e3T + 2.05e7T^{2} \)
31 \( 1 + 794.T + 2.86e7T^{2} \)
37 \( 1 - 2.98e3T + 6.93e7T^{2} \)
41 \( 1 + 1.19e4T + 1.15e8T^{2} \)
43 \( 1 + 9.82e3T + 1.47e8T^{2} \)
47 \( 1 + 1.96e4T + 2.29e8T^{2} \)
53 \( 1 - 1.98e4T + 4.18e8T^{2} \)
59 \( 1 - 3.58e4T + 7.14e8T^{2} \)
61 \( 1 - 4.99e4T + 8.44e8T^{2} \)
67 \( 1 + 4.81e4T + 1.35e9T^{2} \)
71 \( 1 - 7.71e4T + 1.80e9T^{2} \)
73 \( 1 + 5.96e4T + 2.07e9T^{2} \)
79 \( 1 + 6.07e4T + 3.07e9T^{2} \)
83 \( 1 + 4.61e4T + 3.93e9T^{2} \)
89 \( 1 + 7.86e4T + 5.58e9T^{2} \)
97 \( 1 + 4.35e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.555462264747417879930574420370, −8.337453001800300570429596163727, −6.99776912218785861485492708788, −6.24719227751406570541971007091, −5.48658832419772704847951516642, −4.27542748156182842835518704918, −3.58853481527506547326383037838, −2.17011482081177402574975964839, −1.36418078776407011893637310241, 0, 1.36418078776407011893637310241, 2.17011482081177402574975964839, 3.58853481527506547326383037838, 4.27542748156182842835518704918, 5.48658832419772704847951516642, 6.24719227751406570541971007091, 6.99776912218785861485492708788, 8.337453001800300570429596163727, 8.555462264747417879930574420370

Graph of the $Z$-function along the critical line