L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s − 2·5-s + (0.499 + 0.866i)6-s + (2 + 3.46i)7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (1 − 1.73i)10-s + (−2 + 3.46i)11-s − 0.999·12-s − 3.99·14-s + (−1 + 1.73i)15-s + (−0.5 + 0.866i)16-s + (−1 − 1.73i)17-s + 0.999·18-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s − 0.894·5-s + (0.204 + 0.353i)6-s + (0.755 + 1.30i)7-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.316 − 0.547i)10-s + (−0.603 + 1.04i)11-s − 0.288·12-s − 1.06·14-s + (−0.258 + 0.447i)15-s + (−0.125 + 0.216i)16-s + (−0.242 − 0.420i)17-s + 0.235·18-s + ⋯ |
Λ(s)=(=(1014s/2ΓC(s)L(s)(−0.999−0.0256i)Λ(2−s)
Λ(s)=(=(1014s/2ΓC(s+1/2)L(s)(−0.999−0.0256i)Λ(1−s)
Degree: |
2 |
Conductor: |
1014
= 2⋅3⋅132
|
Sign: |
−0.999−0.0256i
|
Analytic conductor: |
8.09683 |
Root analytic conductor: |
2.84549 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1014(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1014, ( :1/2), −0.999−0.0256i)
|
Particular Values
L(1) |
≈ |
0.4022785464 |
L(21) |
≈ |
0.4022785464 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1+(−0.5+0.866i)T |
| 13 | 1 |
good | 5 | 1+2T+5T2 |
| 7 | 1+(−2−3.46i)T+(−3.5+6.06i)T2 |
| 11 | 1+(2−3.46i)T+(−5.5−9.52i)T2 |
| 17 | 1+(1+1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1+(4+6.92i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(3−5.19i)T+(−14.5−25.1i)T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+(1−1.73i)T+(−18.5−32.0i)T2 |
| 41 | 1+(5−8.66i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2+3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+8T+47T2 |
| 53 | 1+10T+53T2 |
| 59 | 1+(−2−3.46i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1−1.73i)T+(−30.5+52.8i)T2 |
| 67 | 1+(8−13.8i)T+(−33.5−58.0i)T2 |
| 71 | 1+(4+6.92i)T+(−35.5+61.4i)T2 |
| 73 | 1+2T+73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1+12T+83T2 |
| 89 | 1+(−7+12.1i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−5−8.66i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23293368755067370434529154658, −9.145368391691606469633274913217, −8.595900598507780154457311413929, −7.894324956602114837988826055505, −7.18880109604546421318558008814, −6.35877488863836362857121327480, −5.09106181565756656540423357970, −4.58148990842437095798915005268, −2.87820913814768552798286213066, −1.83989499757516797369505272854,
0.19250200304708857246001916242, 1.80490141972538580177281045757, 3.41033223829196181202537127968, 3.94690539412875462211810166483, 4.75662507632535100368520916332, 6.10774924336476300793289181373, 7.49152982329765896674352078523, 8.135884460639258980653108170615, 8.437538714039520507205622594830, 9.798364260814972238884862418113