L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s − 2·5-s + (0.499 + 0.866i)6-s + (2 + 3.46i)7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (1 − 1.73i)10-s + (−2 + 3.46i)11-s − 0.999·12-s − 3.99·14-s + (−1 + 1.73i)15-s + (−0.5 + 0.866i)16-s + (−1 − 1.73i)17-s + 0.999·18-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s − 0.894·5-s + (0.204 + 0.353i)6-s + (0.755 + 1.30i)7-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.316 − 0.547i)10-s + (−0.603 + 1.04i)11-s − 0.288·12-s − 1.06·14-s + (−0.258 + 0.447i)15-s + (−0.125 + 0.216i)16-s + (−0.242 − 0.420i)17-s + 0.235·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0256i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4022785464\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4022785464\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + 2T + 5T^{2} \) |
| 7 | \( 1 + (-2 - 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1 + 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4 + 6.92i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 - 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5 - 8.66i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 + 10T + 53T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (8 - 13.8i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4 + 6.92i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + (-7 + 12.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5 - 8.66i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23293368755067370434529154658, −9.145368391691606469633274913217, −8.595900598507780154457311413929, −7.894324956602114837988826055505, −7.18880109604546421318558008814, −6.35877488863836362857121327480, −5.09106181565756656540423357970, −4.58148990842437095798915005268, −2.87820913814768552798286213066, −1.83989499757516797369505272854,
0.19250200304708857246001916242, 1.80490141972538580177281045757, 3.41033223829196181202537127968, 3.94690539412875462211810166483, 4.75662507632535100368520916332, 6.10774924336476300793289181373, 7.49152982329765896674352078523, 8.135884460639258980653108170615, 8.437538714039520507205622594830, 9.798364260814972238884862418113