Properties

Label 2-1014-1.1-c3-0-24
Degree $2$
Conductor $1014$
Sign $1$
Analytic cond. $59.8279$
Root an. cond. $7.73485$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·3-s + 4·4-s − 10·5-s + 6·6-s + 8·7-s + 8·8-s + 9·9-s − 20·10-s − 40·11-s + 12·12-s + 16·14-s − 30·15-s + 16·16-s + 130·17-s + 18·18-s + 20·19-s − 40·20-s + 24·21-s − 80·22-s + 24·24-s − 25·25-s + 27·27-s + 32·28-s − 18·29-s − 60·30-s + 184·31-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s + 0.431·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 1.09·11-s + 0.288·12-s + 0.305·14-s − 0.516·15-s + 1/4·16-s + 1.85·17-s + 0.235·18-s + 0.241·19-s − 0.447·20-s + 0.249·21-s − 0.775·22-s + 0.204·24-s − 1/5·25-s + 0.192·27-s + 0.215·28-s − 0.115·29-s − 0.365·30-s + 1.06·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1014\)    =    \(2 \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(59.8279\)
Root analytic conductor: \(7.73485\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1014,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.758857780\)
\(L(\frac12)\) \(\approx\) \(3.758857780\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 - p T \)
13 \( 1 \)
good5 \( 1 + 2 p T + p^{3} T^{2} \)
7 \( 1 - 8 T + p^{3} T^{2} \)
11 \( 1 + 40 T + p^{3} T^{2} \)
17 \( 1 - 130 T + p^{3} T^{2} \)
19 \( 1 - 20 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + 18 T + p^{3} T^{2} \)
31 \( 1 - 184 T + p^{3} T^{2} \)
37 \( 1 - 2 p T + p^{3} T^{2} \)
41 \( 1 - 362 T + p^{3} T^{2} \)
43 \( 1 - 76 T + p^{3} T^{2} \)
47 \( 1 - 452 T + p^{3} T^{2} \)
53 \( 1 - 382 T + p^{3} T^{2} \)
59 \( 1 + 464 T + p^{3} T^{2} \)
61 \( 1 - 358 T + p^{3} T^{2} \)
67 \( 1 - 700 T + p^{3} T^{2} \)
71 \( 1 - 748 T + p^{3} T^{2} \)
73 \( 1 + 1058 T + p^{3} T^{2} \)
79 \( 1 + 976 T + p^{3} T^{2} \)
83 \( 1 - 1008 T + p^{3} T^{2} \)
89 \( 1 - 386 T + p^{3} T^{2} \)
97 \( 1 - 614 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.703974263994165601957947360196, −8.435113713446498097304087181019, −7.72330190374658220047622912186, −7.41812313424302815665877894826, −5.96954528153293445114661133586, −5.12485242198336402734946153796, −4.18184017096352409463594465195, −3.31826065918618045217441523449, −2.43039462383601003556197025285, −0.925280667783231477268077905844, 0.925280667783231477268077905844, 2.43039462383601003556197025285, 3.31826065918618045217441523449, 4.18184017096352409463594465195, 5.12485242198336402734946153796, 5.96954528153293445114661133586, 7.41812313424302815665877894826, 7.72330190374658220047622912186, 8.435113713446498097304087181019, 9.703974263994165601957947360196

Graph of the $Z$-function along the critical line