L(s) = 1 | + (2 + 2i)2-s + (8.99 − 0.311i)3-s + 8i·4-s + (−13.3 + 32.3i)5-s + (18.6 + 17.3i)6-s + (79.8 − 33.0i)7-s + (−16 + 16i)8-s + (80.8 − 5.59i)9-s + (−91.4 + 37.8i)10-s + (−156. + 64.8i)11-s + (2.48 + 71.9i)12-s − 3.42i·13-s + (225. + 93.5i)14-s + (−110. + 295. i)15-s − 64·16-s + (−59.1 + 282. i)17-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (0.999 − 0.0345i)3-s + 0.5i·4-s + (−0.535 + 1.29i)5-s + (0.516 + 0.482i)6-s + (1.62 − 0.674i)7-s + (−0.250 + 0.250i)8-s + (0.997 − 0.0691i)9-s + (−0.914 + 0.378i)10-s + (−1.29 + 0.536i)11-s + (0.0172 + 0.499i)12-s − 0.0202i·13-s + (1.15 + 0.477i)14-s + (−0.490 + 1.31i)15-s − 0.250·16-s + (−0.204 + 0.978i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 102 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0955 - 0.995i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.0955 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(2.29999 + 2.08983i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.29999 + 2.08983i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 - 2i)T \) |
| 3 | \( 1 + (-8.99 + 0.311i)T \) |
| 17 | \( 1 + (59.1 - 282. i)T \) |
good | 5 | \( 1 + (13.3 - 32.3i)T + (-441. - 441. i)T^{2} \) |
| 7 | \( 1 + (-79.8 + 33.0i)T + (1.69e3 - 1.69e3i)T^{2} \) |
| 11 | \( 1 + (156. - 64.8i)T + (1.03e4 - 1.03e4i)T^{2} \) |
| 13 | \( 1 + 3.42iT - 2.85e4T^{2} \) |
| 19 | \( 1 + (-46.0 + 46.0i)T - 1.30e5iT^{2} \) |
| 23 | \( 1 + (-551. + 228. i)T + (1.97e5 - 1.97e5i)T^{2} \) |
| 29 | \( 1 + (-238. + 575. i)T + (-5.00e5 - 5.00e5i)T^{2} \) |
| 31 | \( 1 + (494. - 1.19e3i)T + (-6.53e5 - 6.53e5i)T^{2} \) |
| 37 | \( 1 + (-843. + 2.03e3i)T + (-1.32e6 - 1.32e6i)T^{2} \) |
| 41 | \( 1 + (944. + 2.27e3i)T + (-1.99e6 + 1.99e6i)T^{2} \) |
| 43 | \( 1 + (583. + 583. i)T + 3.41e6iT^{2} \) |
| 47 | \( 1 - 819.T + 4.87e6T^{2} \) |
| 53 | \( 1 + (2.35e3 + 2.35e3i)T + 7.89e6iT^{2} \) |
| 59 | \( 1 + (-2.35e3 + 2.35e3i)T - 1.21e7iT^{2} \) |
| 61 | \( 1 + (1.28e3 - 531. i)T + (9.79e6 - 9.79e6i)T^{2} \) |
| 67 | \( 1 + 3.53e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + (-2.31e3 - 958. i)T + (1.79e7 + 1.79e7i)T^{2} \) |
| 73 | \( 1 + (-6.57e3 - 2.72e3i)T + (2.00e7 + 2.00e7i)T^{2} \) |
| 79 | \( 1 + (222. + 536. i)T + (-2.75e7 + 2.75e7i)T^{2} \) |
| 83 | \( 1 + (4.83e3 + 4.83e3i)T + 4.74e7iT^{2} \) |
| 89 | \( 1 - 1.02e4T + 6.27e7T^{2} \) |
| 97 | \( 1 + (5.33e3 + 2.20e3i)T + (6.25e7 + 6.25e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.71982176966713896450399853156, −12.59722773827100983222198766068, −11.03325907845952675615183197667, −10.44412134666339676444441890773, −8.476654344040165502031019167533, −7.63086314414338907934935026250, −7.02783276506894527266796604655, −4.92208845399189459374897768061, −3.70998111265758726623576695391, −2.26019507415989781017536557318,
1.27450109584301164343743351970, 2.79175867655643995017468929173, 4.61608109546511369007282103666, 5.18505404359110749730707596412, 7.76396558967747653916140107554, 8.418896146066590167373885945775, 9.394178300191085612439677937545, 11.00940602031113660930085568248, 11.90006800381287570320468295878, 12.99478680965009816684811262105