L(s) = 1 | + (2 + 2i)2-s + (−8.98 + 0.470i)3-s + 8i·4-s + (44.5 + 18.4i)5-s + (−18.9 − 17.0i)6-s + (−18.9 − 45.7i)7-s + (−16 + 16i)8-s + (80.5 − 8.46i)9-s + (52.2 + 126. i)10-s + (52.1 + 125. i)11-s + (−3.76 − 71.9i)12-s + 104. i·13-s + (53.6 − 129. i)14-s + (−409. − 144. i)15-s − 64·16-s + (−189. + 218. i)17-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (−0.998 + 0.0523i)3-s + 0.5i·4-s + (1.78 + 0.738i)5-s + (−0.525 − 0.473i)6-s + (−0.386 − 0.934i)7-s + (−0.250 + 0.250i)8-s + (0.994 − 0.104i)9-s + (0.522 + 1.26i)10-s + (0.430 + 1.04i)11-s + (−0.0261 − 0.499i)12-s + 0.621i·13-s + (0.273 − 0.660i)14-s + (−1.81 − 0.644i)15-s − 0.250·16-s + (−0.654 + 0.755i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 102 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.169 - 0.985i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.169 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.30851 + 1.55278i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30851 + 1.55278i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 - 2i)T \) |
| 3 | \( 1 + (8.98 - 0.470i)T \) |
| 17 | \( 1 + (189. - 218. i)T \) |
good | 5 | \( 1 + (-44.5 - 18.4i)T + (441. + 441. i)T^{2} \) |
| 7 | \( 1 + (18.9 + 45.7i)T + (-1.69e3 + 1.69e3i)T^{2} \) |
| 11 | \( 1 + (-52.1 - 125. i)T + (-1.03e4 + 1.03e4i)T^{2} \) |
| 13 | \( 1 - 104. iT - 2.85e4T^{2} \) |
| 19 | \( 1 + (61.0 - 61.0i)T - 1.30e5iT^{2} \) |
| 23 | \( 1 + (-130. - 314. i)T + (-1.97e5 + 1.97e5i)T^{2} \) |
| 29 | \( 1 + (364. + 151. i)T + (5.00e5 + 5.00e5i)T^{2} \) |
| 31 | \( 1 + (-108. - 44.9i)T + (6.53e5 + 6.53e5i)T^{2} \) |
| 37 | \( 1 + (-685. - 284. i)T + (1.32e6 + 1.32e6i)T^{2} \) |
| 41 | \( 1 + (-2.73e3 + 1.13e3i)T + (1.99e6 - 1.99e6i)T^{2} \) |
| 43 | \( 1 + (2.21e3 + 2.21e3i)T + 3.41e6iT^{2} \) |
| 47 | \( 1 + 798.T + 4.87e6T^{2} \) |
| 53 | \( 1 + (-1.47e3 - 1.47e3i)T + 7.89e6iT^{2} \) |
| 59 | \( 1 + (-3.40e3 + 3.40e3i)T - 1.21e7iT^{2} \) |
| 61 | \( 1 + (1.82e3 + 4.39e3i)T + (-9.79e6 + 9.79e6i)T^{2} \) |
| 67 | \( 1 - 4.36e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + (378. - 913. i)T + (-1.79e7 - 1.79e7i)T^{2} \) |
| 73 | \( 1 + (3.87e3 - 9.36e3i)T + (-2.00e7 - 2.00e7i)T^{2} \) |
| 79 | \( 1 + (-2.33e3 + 966. i)T + (2.75e7 - 2.75e7i)T^{2} \) |
| 83 | \( 1 + (-280. - 280. i)T + 4.74e7iT^{2} \) |
| 89 | \( 1 + 3.18e3T + 6.27e7T^{2} \) |
| 97 | \( 1 + (1.30e3 - 3.14e3i)T + (-6.25e7 - 6.25e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.40210869472643080584003413918, −12.68781992400602686792402903077, −11.18427668082177111727714835582, −10.20148266706987408787156891830, −9.447148411354188147125844294776, −7.04170537398499561198670091342, −6.58875955674551063009359094937, −5.51624291177110192658070351074, −4.09930413468744466489246408955, −1.85226494448179635231560411864,
0.944504611808127347214581376584, 2.51627307827580254762998641786, 4.85093775269648298584946579289, 5.79399154242706962353758903178, 6.36127495492041783671327431932, 8.900737814433780414596240030585, 9.694111565862174945936040711064, 10.79413705404830384582662066845, 11.88386125815956757142809943763, 12.99873338765868067319181441254