L(s) = 1 | + (2 − 2i)2-s + (1.73 − 8.83i)3-s − 8i·4-s + (−7.65 − 18.4i)5-s + (−14.1 − 21.1i)6-s + (3.64 + 1.50i)7-s + (−16 − 16i)8-s + (−74.9 − 30.6i)9-s + (−52.2 − 21.6i)10-s + (25.7 + 10.6i)11-s + (−70.6 − 13.9i)12-s − 9.18i·13-s + (10.3 − 4.27i)14-s + (−176. + 35.4i)15-s − 64·16-s + (106. + 268. i)17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s + (0.193 − 0.981i)3-s − 0.5i·4-s + (−0.306 − 0.739i)5-s + (−0.394 − 0.587i)6-s + (0.0743 + 0.0308i)7-s + (−0.250 − 0.250i)8-s + (−0.925 − 0.378i)9-s + (−0.522 − 0.216i)10-s + (0.213 + 0.0882i)11-s + (−0.490 − 0.0965i)12-s − 0.0543i·13-s + (0.0526 − 0.0217i)14-s + (−0.784 + 0.157i)15-s − 0.250·16-s + (0.368 + 0.929i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 102 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.106i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.994 + 0.106i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.0991106 - 1.85324i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0991106 - 1.85324i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 + 2i)T \) |
| 3 | \( 1 + (-1.73 + 8.83i)T \) |
| 17 | \( 1 + (-106. - 268. i)T \) |
good | 5 | \( 1 + (7.65 + 18.4i)T + (-441. + 441. i)T^{2} \) |
| 7 | \( 1 + (-3.64 - 1.50i)T + (1.69e3 + 1.69e3i)T^{2} \) |
| 11 | \( 1 + (-25.7 - 10.6i)T + (1.03e4 + 1.03e4i)T^{2} \) |
| 13 | \( 1 + 9.18iT - 2.85e4T^{2} \) |
| 19 | \( 1 + (360. + 360. i)T + 1.30e5iT^{2} \) |
| 23 | \( 1 + (-240. - 99.6i)T + (1.97e5 + 1.97e5i)T^{2} \) |
| 29 | \( 1 + (-13.8 - 33.3i)T + (-5.00e5 + 5.00e5i)T^{2} \) |
| 31 | \( 1 + (540. + 1.30e3i)T + (-6.53e5 + 6.53e5i)T^{2} \) |
| 37 | \( 1 + (-56.2 - 135. i)T + (-1.32e6 + 1.32e6i)T^{2} \) |
| 41 | \( 1 + (-520. + 1.25e3i)T + (-1.99e6 - 1.99e6i)T^{2} \) |
| 43 | \( 1 + (-868. + 868. i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 - 2.73e3T + 4.87e6T^{2} \) |
| 53 | \( 1 + (-1.55e3 + 1.55e3i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 + (-2.22e3 - 2.22e3i)T + 1.21e7iT^{2} \) |
| 61 | \( 1 + (-1.13e3 - 471. i)T + (9.79e6 + 9.79e6i)T^{2} \) |
| 67 | \( 1 - 7.86e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + (1.08e3 - 449. i)T + (1.79e7 - 1.79e7i)T^{2} \) |
| 73 | \( 1 + (-2.73e3 + 1.13e3i)T + (2.00e7 - 2.00e7i)T^{2} \) |
| 79 | \( 1 + (-1.48e3 + 3.58e3i)T + (-2.75e7 - 2.75e7i)T^{2} \) |
| 83 | \( 1 + (1.93e3 - 1.93e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + 3.54e3T + 6.27e7T^{2} \) |
| 97 | \( 1 + (8.87e3 - 3.67e3i)T + (6.25e7 - 6.25e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.72338210562444824394582486009, −11.84584869646783715051423512590, −10.79687789372428864167304774415, −9.160903318718867591859790864106, −8.216880028737233941618520903992, −6.83224815186984090343442990254, −5.52438884174937078199503042946, −3.99996874543523054965887540489, −2.24302560162013263528530020295, −0.70915965367659393958210451634,
2.92825570275510934645114451867, 4.08321169615221816940583524758, 5.38904057602826201101240753407, 6.77169671785866704600603937069, 8.053296730535924457810404148772, 9.243917348160345376230293106698, 10.53029749084566345349294124011, 11.38148235305293031109619189340, 12.63216634454266960859841675203, 14.16127850462867903630594429602