L(s) = 1 | + (1.41 − 1.41i)5-s − 3i·9-s + (−4.24 − 4.24i)13-s − 2·17-s + 0.999i·25-s + (−7.07 − 7.07i)29-s + (1.41 − 1.41i)37-s + 10i·41-s + (−4.24 − 4.24i)45-s + 7·49-s + (9.89 − 9.89i)53-s + (−7.07 − 7.07i)61-s − 12·65-s − 6i·73-s − 9·81-s + ⋯ |
L(s) = 1 | + (0.632 − 0.632i)5-s − i·9-s + (−1.17 − 1.17i)13-s − 0.485·17-s + 0.199i·25-s + (−1.31 − 1.31i)29-s + (0.232 − 0.232i)37-s + 1.56i·41-s + (−0.632 − 0.632i)45-s + 49-s + (1.35 − 1.35i)53-s + (−0.905 − 0.905i)61-s − 1.48·65-s − 0.702i·73-s − 81-s + ⋯ |
Λ(s)=(=(1024s/2ΓC(s)L(s)(−0.382+0.923i)Λ(2−s)
Λ(s)=(=(1024s/2ΓC(s+1/2)L(s)(−0.382+0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
1024
= 210
|
Sign: |
−0.382+0.923i
|
Analytic conductor: |
8.17668 |
Root analytic conductor: |
2.85948 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1024(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1024, ( :1/2), −0.382+0.923i)
|
Particular Values
L(1) |
≈ |
1.311028777 |
L(21) |
≈ |
1.311028777 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+3iT2 |
| 5 | 1+(−1.41+1.41i)T−5iT2 |
| 7 | 1−7T2 |
| 11 | 1−11iT2 |
| 13 | 1+(4.24+4.24i)T+13iT2 |
| 17 | 1+2T+17T2 |
| 19 | 1+19iT2 |
| 23 | 1−23T2 |
| 29 | 1+(7.07+7.07i)T+29iT2 |
| 31 | 1+31T2 |
| 37 | 1+(−1.41+1.41i)T−37iT2 |
| 41 | 1−10iT−41T2 |
| 43 | 1−43iT2 |
| 47 | 1+47T2 |
| 53 | 1+(−9.89+9.89i)T−53iT2 |
| 59 | 1−59iT2 |
| 61 | 1+(7.07+7.07i)T+61iT2 |
| 67 | 1+67iT2 |
| 71 | 1−71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+83iT2 |
| 89 | 1+10iT−89T2 |
| 97 | 1−18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.620283036764787944307423816710, −9.064602094731346530248000317992, −8.037174266388778325042618447529, −7.20843442642607362112930182312, −6.11847789407009324111669185490, −5.44051043365300152293167439512, −4.48202280828293009755043746083, −3.29094604743136645679953673768, −2.09309480223514768698021602910, −0.56167569235541526640622874703,
1.93156024107026740741843752164, 2.60007298966074515473555153780, 4.08713117179827191216354712982, 5.04205152256619503955879385253, 5.91652349504064375793631567283, 7.05859567686355949057528065175, 7.38519512176941067332095039794, 8.718483851383060738656172169502, 9.377663218754535898129479680363, 10.33337060286031108206974089336