L(s) = 1 | + (−1 + i)2-s − 3-s − 2i·4-s + (2.54 + 2.54i)5-s + (1 − i)6-s + (−2.54 + 2.54i)7-s + (2 + 2i)8-s − 2·9-s − 5.09·10-s + (1 + i)11-s + 2i·12-s + (2.54 + 2.54i)13-s − 5.09i·14-s + (−2.54 − 2.54i)15-s − 4·16-s − 3i·17-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 0.577·3-s − i·4-s + (1.14 + 1.14i)5-s + (0.408 − 0.408i)6-s + (−0.963 + 0.963i)7-s + (0.707 + 0.707i)8-s − 0.666·9-s − 1.61·10-s + (0.301 + 0.301i)11-s + 0.577i·12-s + (0.707 + 0.707i)13-s − 1.36i·14-s + (−0.658 − 0.658i)15-s − 16-s − 0.727i·17-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)(−0.289−0.957i)Λ(2−s)
Λ(s)=(=(104s/2ΓC(s+1/2)L(s)(−0.289−0.957i)Λ(1−s)
Degree: |
2 |
Conductor: |
104
= 23⋅13
|
Sign: |
−0.289−0.957i
|
Analytic conductor: |
0.830444 |
Root analytic conductor: |
0.911287 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ104(83,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 104, ( :1/2), −0.289−0.957i)
|
Particular Values
L(1) |
≈ |
0.382697+0.515726i |
L(21) |
≈ |
0.382697+0.515726i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−i)T |
| 13 | 1+(−2.54−2.54i)T |
good | 3 | 1+T+3T2 |
| 5 | 1+(−2.54−2.54i)T+5iT2 |
| 7 | 1+(2.54−2.54i)T−7iT2 |
| 11 | 1+(−1−i)T+11iT2 |
| 17 | 1+3iT−17T2 |
| 19 | 1+(−2+2i)T−19iT2 |
| 23 | 1−5.09T+23T2 |
| 29 | 1+5.09iT−29T2 |
| 31 | 1+(5.09+5.09i)T+31iT2 |
| 37 | 1+(2.54−2.54i)T−37iT2 |
| 41 | 1+(−6+6i)T−41iT2 |
| 43 | 1+iT−43T2 |
| 47 | 1+(2.54−2.54i)T−47iT2 |
| 53 | 1−5.09iT−53T2 |
| 59 | 1+(−8−8i)T+59iT2 |
| 61 | 1−61T2 |
| 67 | 1+(−3+3i)T−67iT2 |
| 71 | 1+(−7.64−7.64i)T+71iT2 |
| 73 | 1+(6+6i)T+73iT2 |
| 79 | 1+5.09iT−79T2 |
| 83 | 1+(−5+5i)T−83iT2 |
| 89 | 1+(2+2i)T+89iT2 |
| 97 | 1+(7−7i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.25846987770983420492053383154, −13.38253692476843098282926551077, −11.65571896803484622456948625666, −10.78968984458762246601037391337, −9.558937967384012206759723928695, −9.039021026010379074162872165601, −7.03501935581057867994513552218, −6.23515471476455278429499283065, −5.52985957166114308155843123738, −2.56799555875125013026098134348,
1.08173189395811207877629341027, 3.46072327223121112782592454106, 5.36789693522002550494786699393, 6.64000696166601176652651517608, 8.401852584101365089044823613797, 9.296557111346423641802637298505, 10.29775359764292976226402564992, 11.12279472756644437787749760808, 12.65207214052451607068231670570, 13.00369865335117237236138588059