L(s) = 1 | + (1.15 + 0.813i)2-s + 1.38·3-s + (0.674 + 1.88i)4-s + (−2.40 − 2.40i)5-s + (1.60 + 1.12i)6-s + (−0.127 + 0.127i)7-s + (−0.751 + 2.72i)8-s − 1.07·9-s + (−0.825 − 4.74i)10-s + (−2.63 − 2.63i)11-s + (0.936 + 2.61i)12-s + (1.93 + 3.04i)13-s + (−0.250 + 0.0435i)14-s + (−3.34 − 3.34i)15-s + (−3.08 + 2.54i)16-s + 4.33i·17-s + ⋯ |
L(s) = 1 | + (0.817 + 0.575i)2-s + 0.801·3-s + (0.337 + 0.941i)4-s + (−1.07 − 1.07i)5-s + (0.655 + 0.461i)6-s + (−0.0480 + 0.0480i)7-s + (−0.265 + 0.964i)8-s − 0.357·9-s + (−0.260 − 1.50i)10-s + (−0.793 − 0.793i)11-s + (0.270 + 0.754i)12-s + (0.537 + 0.843i)13-s + (−0.0668 + 0.0116i)14-s + (−0.863 − 0.863i)15-s + (−0.772 + 0.635i)16-s + 1.05i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 - 0.558i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.829 - 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.50434 + 0.459233i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.50434 + 0.459233i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.15 - 0.813i)T \) |
| 13 | \( 1 + (-1.93 - 3.04i)T \) |
good | 3 | \( 1 - 1.38T + 3T^{2} \) |
| 5 | \( 1 + (2.40 + 2.40i)T + 5iT^{2} \) |
| 7 | \( 1 + (0.127 - 0.127i)T - 7iT^{2} \) |
| 11 | \( 1 + (2.63 + 2.63i)T + 11iT^{2} \) |
| 17 | \( 1 - 4.33iT - 17T^{2} \) |
| 19 | \( 1 + (-4.97 + 4.97i)T - 19iT^{2} \) |
| 23 | \( 1 - 3.98T + 23T^{2} \) |
| 29 | \( 1 + 4.59iT - 29T^{2} \) |
| 31 | \( 1 + (-1.07 - 1.07i)T + 31iT^{2} \) |
| 37 | \( 1 + (2.45 - 2.45i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.388 + 0.388i)T - 41iT^{2} \) |
| 43 | \( 1 + 5.02iT - 43T^{2} \) |
| 47 | \( 1 + (-1.00 + 1.00i)T - 47iT^{2} \) |
| 53 | \( 1 + 1.83iT - 53T^{2} \) |
| 59 | \( 1 + (-6.28 - 6.28i)T + 59iT^{2} \) |
| 61 | \( 1 - 10.5iT - 61T^{2} \) |
| 67 | \( 1 + (4.21 - 4.21i)T - 67iT^{2} \) |
| 71 | \( 1 + (2.59 + 2.59i)T + 71iT^{2} \) |
| 73 | \( 1 + (0.388 + 0.388i)T + 73iT^{2} \) |
| 79 | \( 1 + 15.3iT - 79T^{2} \) |
| 83 | \( 1 + (2.46 - 2.46i)T - 83iT^{2} \) |
| 89 | \( 1 + (11.3 + 11.3i)T + 89iT^{2} \) |
| 97 | \( 1 + (-3.31 + 3.31i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.71331418011072538241207872032, −13.21933553830647714063162284847, −11.97733926843294803718997268531, −11.19368962892920551559682897028, −8.869668120273623231966486408851, −8.432287381874690846597059988580, −7.37571114040786143428908254357, −5.65347815859101825072903709678, −4.33948708867299266456859597164, −3.11792598352996510764840247593,
2.81960985573929096596803077258, 3.56044134354854554941063967510, 5.31427496746830413111692945808, 7.05762134595474572748386341933, 7.981637153956632485227531968440, 9.677074953147536704181633494198, 10.76525484983058202798160627459, 11.59238934718402845552404258499, 12.68454633718648644487177692331, 13.84102658207858165518266712765