L(s) = 1 | + (1.15 + 0.813i)2-s + 1.38·3-s + (0.674 + 1.88i)4-s + (−2.40 − 2.40i)5-s + (1.60 + 1.12i)6-s + (−0.127 + 0.127i)7-s + (−0.751 + 2.72i)8-s − 1.07·9-s + (−0.825 − 4.74i)10-s + (−2.63 − 2.63i)11-s + (0.936 + 2.61i)12-s + (1.93 + 3.04i)13-s + (−0.250 + 0.0435i)14-s + (−3.34 − 3.34i)15-s + (−3.08 + 2.54i)16-s + 4.33i·17-s + ⋯ |
L(s) = 1 | + (0.817 + 0.575i)2-s + 0.801·3-s + (0.337 + 0.941i)4-s + (−1.07 − 1.07i)5-s + (0.655 + 0.461i)6-s + (−0.0480 + 0.0480i)7-s + (−0.265 + 0.964i)8-s − 0.357·9-s + (−0.260 − 1.50i)10-s + (−0.793 − 0.793i)11-s + (0.270 + 0.754i)12-s + (0.537 + 0.843i)13-s + (−0.0668 + 0.0116i)14-s + (−0.863 − 0.863i)15-s + (−0.772 + 0.635i)16-s + 1.05i·17-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)(0.829−0.558i)Λ(2−s)
Λ(s)=(=(104s/2ΓC(s+1/2)L(s)(0.829−0.558i)Λ(1−s)
Degree: |
2 |
Conductor: |
104
= 23⋅13
|
Sign: |
0.829−0.558i
|
Analytic conductor: |
0.830444 |
Root analytic conductor: |
0.911287 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ104(83,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 104, ( :1/2), 0.829−0.558i)
|
Particular Values
L(1) |
≈ |
1.50434+0.459233i |
L(21) |
≈ |
1.50434+0.459233i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.15−0.813i)T |
| 13 | 1+(−1.93−3.04i)T |
good | 3 | 1−1.38T+3T2 |
| 5 | 1+(2.40+2.40i)T+5iT2 |
| 7 | 1+(0.127−0.127i)T−7iT2 |
| 11 | 1+(2.63+2.63i)T+11iT2 |
| 17 | 1−4.33iT−17T2 |
| 19 | 1+(−4.97+4.97i)T−19iT2 |
| 23 | 1−3.98T+23T2 |
| 29 | 1+4.59iT−29T2 |
| 31 | 1+(−1.07−1.07i)T+31iT2 |
| 37 | 1+(2.45−2.45i)T−37iT2 |
| 41 | 1+(−0.388+0.388i)T−41iT2 |
| 43 | 1+5.02iT−43T2 |
| 47 | 1+(−1.00+1.00i)T−47iT2 |
| 53 | 1+1.83iT−53T2 |
| 59 | 1+(−6.28−6.28i)T+59iT2 |
| 61 | 1−10.5iT−61T2 |
| 67 | 1+(4.21−4.21i)T−67iT2 |
| 71 | 1+(2.59+2.59i)T+71iT2 |
| 73 | 1+(0.388+0.388i)T+73iT2 |
| 79 | 1+15.3iT−79T2 |
| 83 | 1+(2.46−2.46i)T−83iT2 |
| 89 | 1+(11.3+11.3i)T+89iT2 |
| 97 | 1+(−3.31+3.31i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.71331418011072538241207872032, −13.21933553830647714063162284847, −11.97733926843294803718997268531, −11.19368962892920551559682897028, −8.869668120273623231966486408851, −8.432287381874690846597059988580, −7.37571114040786143428908254357, −5.65347815859101825072903709678, −4.33948708867299266456859597164, −3.11792598352996510764840247593,
2.81960985573929096596803077258, 3.56044134354854554941063967510, 5.31427496746830413111692945808, 7.05762134595474572748386341933, 7.981637153956632485227531968440, 9.677074953147536704181633494198, 10.76525484983058202798160627459, 11.59238934718402845552404258499, 12.68454633718648644487177692331, 13.84102658207858165518266712765