L(s) = 1 | + (−1 + i)2-s + (−0.633 − 0.366i)3-s − 2i·4-s − 3.73·5-s + (1 − 0.267i)6-s + (−3 + 1.73i)7-s + (2 + 2i)8-s + (−1.23 − 2.13i)9-s + (3.73 − 3.73i)10-s + (−1 + 1.73i)11-s + (−0.732 + 1.26i)12-s + (2.59 − 2.5i)13-s + (1.26 − 4.73i)14-s + (2.36 + 1.36i)15-s − 4·16-s + (0.232 + 0.401i)17-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.366 − 0.211i)3-s − i·4-s − 1.66·5-s + (0.408 − 0.109i)6-s + (−1.13 + 0.654i)7-s + (0.707 + 0.707i)8-s + (−0.410 − 0.711i)9-s + (1.18 − 1.18i)10-s + (−0.301 + 0.522i)11-s + (−0.211 + 0.366i)12-s + (0.720 − 0.693i)13-s + (0.338 − 1.26i)14-s + (0.610 + 0.352i)15-s − 16-s + (0.0562 + 0.0974i)17-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)(−0.869+0.494i)Λ(2−s)
Λ(s)=(=(104s/2ΓC(s+1/2)L(s)(−0.869+0.494i)Λ(1−s)
Degree: |
2 |
Conductor: |
104
= 23⋅13
|
Sign: |
−0.869+0.494i
|
Analytic conductor: |
0.830444 |
Root analytic conductor: |
0.911287 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ104(69,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 104, ( :1/2), −0.869+0.494i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−i)T |
| 13 | 1+(−2.59+2.5i)T |
good | 3 | 1+(0.633+0.366i)T+(1.5+2.59i)T2 |
| 5 | 1+3.73T+5T2 |
| 7 | 1+(3−1.73i)T+(3.5−6.06i)T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−0.232−0.401i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.633+1.09i)T+(−9.5+16.4i)T2 |
| 23 | 1+(4.09−7.09i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.59+1.5i)T+(14.5+25.1i)T2 |
| 31 | 1+4.73iT−31T2 |
| 37 | 1+(2.13−3.69i)T+(−18.5−32.0i)T2 |
| 41 | 1+(7.96+4.59i)T+(20.5+35.5i)T2 |
| 43 | 1+(2.19−1.26i)T+(21.5−37.2i)T2 |
| 47 | 1+6.73iT−47T2 |
| 53 | 1+3.92iT−53T2 |
| 59 | 1+(0.267+0.464i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.866−0.5i)T+(30.5−52.8i)T2 |
| 67 | 1+(3.63−6.29i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−8.02+4.63i)T+(35.5−61.4i)T2 |
| 73 | 1−1.73iT−73T2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1+1.46T+83T2 |
| 89 | 1+(−6.46−3.73i)T+(44.5+77.0i)T2 |
| 97 | 1+(5.19−3i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.27459514992018053723281735713, −12.09155432331919422560021806903, −11.34658401651644295602498313189, −9.959275773227621639853646702370, −8.786923276720999196671280305504, −7.79482891601130147892503056776, −6.70241883468960821824616526454, −5.57173060992550828612275010275, −3.58033679028000759983194361425, 0,
3.28122465418330377340162477398, 4.31439426193152263666412656159, 6.67002848047013952318864383646, 7.890101517039449672594169451293, 8.740548967189365823097484865780, 10.32069971646691621635120490554, 10.99008065912122407362118649739, 11.87422779914322198786002628128, 12.82843358379086968609241695444