L(s) = 1 | + (−1 + i)2-s + (−0.633 − 0.366i)3-s − 2i·4-s − 3.73·5-s + (1 − 0.267i)6-s + (−3 + 1.73i)7-s + (2 + 2i)8-s + (−1.23 − 2.13i)9-s + (3.73 − 3.73i)10-s + (−1 + 1.73i)11-s + (−0.732 + 1.26i)12-s + (2.59 − 2.5i)13-s + (1.26 − 4.73i)14-s + (2.36 + 1.36i)15-s − 4·16-s + (0.232 + 0.401i)17-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.366 − 0.211i)3-s − i·4-s − 1.66·5-s + (0.408 − 0.109i)6-s + (−1.13 + 0.654i)7-s + (0.707 + 0.707i)8-s + (−0.410 − 0.711i)9-s + (1.18 − 1.18i)10-s + (−0.301 + 0.522i)11-s + (−0.211 + 0.366i)12-s + (0.720 − 0.693i)13-s + (0.338 − 1.26i)14-s + (0.610 + 0.352i)15-s − 16-s + (0.0562 + 0.0974i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.869 + 0.494i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.869 + 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 13 | \( 1 + (-2.59 + 2.5i)T \) |
good | 3 | \( 1 + (0.633 + 0.366i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 3.73T + 5T^{2} \) |
| 7 | \( 1 + (3 - 1.73i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.232 - 0.401i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.633 + 1.09i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.09 - 7.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.59 + 1.5i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.73iT - 31T^{2} \) |
| 37 | \( 1 + (2.13 - 3.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.96 + 4.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.19 - 1.26i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 6.73iT - 47T^{2} \) |
| 53 | \( 1 + 3.92iT - 53T^{2} \) |
| 59 | \( 1 + (0.267 + 0.464i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.866 - 0.5i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.63 - 6.29i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-8.02 + 4.63i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.73iT - 73T^{2} \) |
| 79 | \( 1 + 10.3T + 79T^{2} \) |
| 83 | \( 1 + 1.46T + 83T^{2} \) |
| 89 | \( 1 + (-6.46 - 3.73i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.19 - 3i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.27459514992018053723281735713, −12.09155432331919422560021806903, −11.34658401651644295602498313189, −9.959275773227621639853646702370, −8.786923276720999196671280305504, −7.79482891601130147892503056776, −6.70241883468960821824616526454, −5.57173060992550828612275010275, −3.58033679028000759983194361425, 0,
3.28122465418330377340162477398, 4.31439426193152263666412656159, 6.67002848047013952318864383646, 7.890101517039449672594169451293, 8.740548967189365823097484865780, 10.32069971646691621635120490554, 10.99008065912122407362118649739, 11.87422779914322198786002628128, 12.82843358379086968609241695444