L(s) = 1 | + 19.6·3-s − 25·5-s − 48.6·7-s + 142.·9-s − 283.·11-s + 169·13-s − 491.·15-s + 789.·17-s − 83.3·19-s − 955.·21-s + 1.93e3·23-s + 625·25-s − 1.96e3·27-s + 222.·29-s + 2.78e3·31-s − 5.56e3·33-s + 1.21e3·35-s + 8.36e3·37-s + 3.31e3·39-s + 1.21e3·41-s − 5.63e3·43-s − 3.57e3·45-s − 1.77e4·47-s − 1.44e4·49-s + 1.55e4·51-s + 1.08e4·53-s + 7.08e3·55-s + ⋯ |
L(s) = 1 | + 1.26·3-s − 0.447·5-s − 0.375·7-s + 0.587·9-s − 0.706·11-s + 0.277·13-s − 0.563·15-s + 0.662·17-s − 0.0529·19-s − 0.472·21-s + 0.762·23-s + 0.200·25-s − 0.519·27-s + 0.0491·29-s + 0.521·31-s − 0.890·33-s + 0.167·35-s + 1.00·37-s + 0.349·39-s + 0.113·41-s − 0.465·43-s − 0.262·45-s − 1.17·47-s − 0.859·49-s + 0.834·51-s + 0.529·53-s + 0.315·55-s + ⋯ |
Λ(s)=(=(1040s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(1040s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+25T |
| 13 | 1−169T |
good | 3 | 1−19.6T+243T2 |
| 7 | 1+48.6T+1.68e4T2 |
| 11 | 1+283.T+1.61e5T2 |
| 17 | 1−789.T+1.41e6T2 |
| 19 | 1+83.3T+2.47e6T2 |
| 23 | 1−1.93e3T+6.43e6T2 |
| 29 | 1−222.T+2.05e7T2 |
| 31 | 1−2.78e3T+2.86e7T2 |
| 37 | 1−8.36e3T+6.93e7T2 |
| 41 | 1−1.21e3T+1.15e8T2 |
| 43 | 1+5.63e3T+1.47e8T2 |
| 47 | 1+1.77e4T+2.29e8T2 |
| 53 | 1−1.08e4T+4.18e8T2 |
| 59 | 1−5.36e3T+7.14e8T2 |
| 61 | 1+1.86e4T+8.44e8T2 |
| 67 | 1+1.39e4T+1.35e9T2 |
| 71 | 1+5.09e4T+1.80e9T2 |
| 73 | 1−4.23e4T+2.07e9T2 |
| 79 | 1+1.06e5T+3.07e9T2 |
| 83 | 1+7.55e4T+3.93e9T2 |
| 89 | 1−7.70e4T+5.58e9T2 |
| 97 | 1−1.26e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.667113304752254855741038512910, −8.031015963332111296650441102436, −7.40707137502712305678876286074, −6.35750892470555127557458349317, −5.23887600500557711393328713686, −4.15075731845071741741851325060, −3.18633688900167520149547058053, −2.67721104588665522663585575467, −1.35510861283643087878898918155, 0,
1.35510861283643087878898918155, 2.67721104588665522663585575467, 3.18633688900167520149547058053, 4.15075731845071741741851325060, 5.23887600500557711393328713686, 6.35750892470555127557458349317, 7.40707137502712305678876286074, 8.031015963332111296650441102436, 8.667113304752254855741038512910