Properties

Label 2-1040-1.1-c5-0-29
Degree $2$
Conductor $1040$
Sign $1$
Analytic cond. $166.799$
Root an. cond. $12.9150$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18.2·3-s + 25·5-s − 212.·7-s + 91.3·9-s − 704.·11-s + 169·13-s + 457.·15-s − 669.·17-s + 2.19e3·19-s − 3.88e3·21-s − 590.·23-s + 625·25-s − 2.77e3·27-s + 5.51e3·29-s + 4.29e3·31-s − 1.28e4·33-s − 5.30e3·35-s − 5.20e3·37-s + 3.09e3·39-s + 6.96e3·41-s − 831.·43-s + 2.28e3·45-s − 1.93e4·47-s + 2.82e4·49-s − 1.22e4·51-s − 3.16e4·53-s − 1.76e4·55-s + ⋯
L(s)  = 1  + 1.17·3-s + 0.447·5-s − 1.63·7-s + 0.376·9-s − 1.75·11-s + 0.277·13-s + 0.524·15-s − 0.561·17-s + 1.39·19-s − 1.92·21-s − 0.232·23-s + 0.200·25-s − 0.731·27-s + 1.21·29-s + 0.802·31-s − 2.05·33-s − 0.732·35-s − 0.625·37-s + 0.325·39-s + 0.647·41-s − 0.0686·43-s + 0.168·45-s − 1.28·47-s + 1.68·49-s − 0.658·51-s − 1.54·53-s − 0.784·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1040\)    =    \(2^{4} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(166.799\)
Root analytic conductor: \(12.9150\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1040,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.235216708\)
\(L(\frac12)\) \(\approx\) \(2.235216708\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 25T \)
13 \( 1 - 169T \)
good3 \( 1 - 18.2T + 243T^{2} \)
7 \( 1 + 212.T + 1.68e4T^{2} \)
11 \( 1 + 704.T + 1.61e5T^{2} \)
17 \( 1 + 669.T + 1.41e6T^{2} \)
19 \( 1 - 2.19e3T + 2.47e6T^{2} \)
23 \( 1 + 590.T + 6.43e6T^{2} \)
29 \( 1 - 5.51e3T + 2.05e7T^{2} \)
31 \( 1 - 4.29e3T + 2.86e7T^{2} \)
37 \( 1 + 5.20e3T + 6.93e7T^{2} \)
41 \( 1 - 6.96e3T + 1.15e8T^{2} \)
43 \( 1 + 831.T + 1.47e8T^{2} \)
47 \( 1 + 1.93e4T + 2.29e8T^{2} \)
53 \( 1 + 3.16e4T + 4.18e8T^{2} \)
59 \( 1 - 2.71e4T + 7.14e8T^{2} \)
61 \( 1 - 5.39e4T + 8.44e8T^{2} \)
67 \( 1 + 1.69e4T + 1.35e9T^{2} \)
71 \( 1 + 6.76e4T + 1.80e9T^{2} \)
73 \( 1 - 3.74e4T + 2.07e9T^{2} \)
79 \( 1 - 8.07e4T + 3.07e9T^{2} \)
83 \( 1 + 7.86e3T + 3.93e9T^{2} \)
89 \( 1 - 6.70e4T + 5.58e9T^{2} \)
97 \( 1 - 1.41e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.245002352551842378740124822212, −8.407275911460115145853186885371, −7.68524381682253999674926410883, −6.72294928287069959599229791945, −5.86820442915086425152236836921, −4.87631955589824635424818861004, −3.41529854011445098415398569955, −2.95675905563015880159725283566, −2.20313713927893227750615667049, −0.57264933634631720546309258187, 0.57264933634631720546309258187, 2.20313713927893227750615667049, 2.95675905563015880159725283566, 3.41529854011445098415398569955, 4.87631955589824635424818861004, 5.86820442915086425152236836921, 6.72294928287069959599229791945, 7.68524381682253999674926410883, 8.407275911460115145853186885371, 9.245002352551842378740124822212

Graph of the $Z$-function along the critical line