Properties

Label 2-105-1.1-c9-0-6
Degree $2$
Conductor $105$
Sign $1$
Analytic cond. $54.0787$
Root an. cond. $7.35382$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19.1·2-s − 81·3-s − 146.·4-s + 625·5-s + 1.54e3·6-s − 2.40e3·7-s + 1.25e4·8-s + 6.56e3·9-s − 1.19e4·10-s + 6.69e4·11-s + 1.18e4·12-s − 1.13e5·13-s + 4.58e4·14-s − 5.06e4·15-s − 1.65e5·16-s + 5.03e5·17-s − 1.25e5·18-s − 6.66e5·19-s − 9.17e4·20-s + 1.94e5·21-s − 1.27e6·22-s − 2.33e5·23-s − 1.01e6·24-s + 3.90e5·25-s + 2.16e6·26-s − 5.31e5·27-s + 3.52e5·28-s + ⋯
L(s)  = 1  − 0.844·2-s − 0.577·3-s − 0.286·4-s + 0.447·5-s + 0.487·6-s − 0.377·7-s + 1.08·8-s + 0.333·9-s − 0.377·10-s + 1.37·11-s + 0.165·12-s − 1.09·13-s + 0.319·14-s − 0.258·15-s − 0.631·16-s + 1.46·17-s − 0.281·18-s − 1.17·19-s − 0.128·20-s + 0.218·21-s − 1.16·22-s − 0.173·23-s − 0.627·24-s + 0.200·25-s + 0.928·26-s − 0.192·27-s + 0.108·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105\)    =    \(3 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(54.0787\)
Root analytic conductor: \(7.35382\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 105,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.8350399990\)
\(L(\frac12)\) \(\approx\) \(0.8350399990\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
7 \( 1 + 2.40e3T \)
good2 \( 1 + 19.1T + 512T^{2} \)
11 \( 1 - 6.69e4T + 2.35e9T^{2} \)
13 \( 1 + 1.13e5T + 1.06e10T^{2} \)
17 \( 1 - 5.03e5T + 1.18e11T^{2} \)
19 \( 1 + 6.66e5T + 3.22e11T^{2} \)
23 \( 1 + 2.33e5T + 1.80e12T^{2} \)
29 \( 1 + 1.70e6T + 1.45e13T^{2} \)
31 \( 1 + 4.60e6T + 2.64e13T^{2} \)
37 \( 1 - 3.33e6T + 1.29e14T^{2} \)
41 \( 1 + 1.57e7T + 3.27e14T^{2} \)
43 \( 1 + 1.97e7T + 5.02e14T^{2} \)
47 \( 1 - 6.65e7T + 1.11e15T^{2} \)
53 \( 1 + 6.63e7T + 3.29e15T^{2} \)
59 \( 1 - 1.18e8T + 8.66e15T^{2} \)
61 \( 1 + 3.11e7T + 1.16e16T^{2} \)
67 \( 1 + 1.76e8T + 2.72e16T^{2} \)
71 \( 1 - 2.87e8T + 4.58e16T^{2} \)
73 \( 1 - 1.47e8T + 5.88e16T^{2} \)
79 \( 1 - 1.80e8T + 1.19e17T^{2} \)
83 \( 1 - 6.04e8T + 1.86e17T^{2} \)
89 \( 1 - 6.67e8T + 3.50e17T^{2} \)
97 \( 1 - 1.69e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.94221105956604710662524817668, −10.57211575687839843380207332284, −9.759184615089516068602960660019, −9.016011265072199760048413971389, −7.62376916492646723854130347302, −6.49706071587561980565655244627, −5.18955598356575558644080282844, −3.86455223318867957534343988710, −1.81034735931760690852168849796, −0.60729270156525285857178521744, 0.60729270156525285857178521744, 1.81034735931760690852168849796, 3.86455223318867957534343988710, 5.18955598356575558644080282844, 6.49706071587561980565655244627, 7.62376916492646723854130347302, 9.016011265072199760048413971389, 9.759184615089516068602960660019, 10.57211575687839843380207332284, 11.94221105956604710662524817668

Graph of the $Z$-function along the critical line