Properties

Label 2-105-1.1-c9-0-19
Degree $2$
Conductor $105$
Sign $1$
Analytic cond. $54.0787$
Root an. cond. $7.35382$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 41.7·2-s − 81·3-s + 1.23e3·4-s − 625·5-s − 3.38e3·6-s + 2.40e3·7-s + 3.01e4·8-s + 6.56e3·9-s − 2.61e4·10-s − 1.90e4·11-s − 9.98e4·12-s + 1.72e5·13-s + 1.00e5·14-s + 5.06e4·15-s + 6.26e5·16-s − 2.53e5·17-s + 2.74e5·18-s + 4.04e4·19-s − 7.70e5·20-s − 1.94e5·21-s − 7.96e5·22-s + 1.52e6·23-s − 2.43e6·24-s + 3.90e5·25-s + 7.18e6·26-s − 5.31e5·27-s + 2.95e6·28-s + ⋯
L(s)  = 1  + 1.84·2-s − 0.577·3-s + 2.40·4-s − 0.447·5-s − 1.06·6-s + 0.377·7-s + 2.59·8-s + 0.333·9-s − 0.825·10-s − 0.392·11-s − 1.39·12-s + 1.67·13-s + 0.697·14-s + 0.258·15-s + 2.38·16-s − 0.736·17-s + 0.615·18-s + 0.0712·19-s − 1.07·20-s − 0.218·21-s − 0.724·22-s + 1.13·23-s − 1.50·24-s + 0.200·25-s + 3.08·26-s − 0.192·27-s + 0.909·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105\)    =    \(3 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(54.0787\)
Root analytic conductor: \(7.35382\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 105,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(6.125176370\)
\(L(\frac12)\) \(\approx\) \(6.125176370\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 + 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 - 41.7T + 512T^{2} \)
11 \( 1 + 1.90e4T + 2.35e9T^{2} \)
13 \( 1 - 1.72e5T + 1.06e10T^{2} \)
17 \( 1 + 2.53e5T + 1.18e11T^{2} \)
19 \( 1 - 4.04e4T + 3.22e11T^{2} \)
23 \( 1 - 1.52e6T + 1.80e12T^{2} \)
29 \( 1 - 4.68e6T + 1.45e13T^{2} \)
31 \( 1 - 6.33e6T + 2.64e13T^{2} \)
37 \( 1 - 8.76e6T + 1.29e14T^{2} \)
41 \( 1 + 2.45e7T + 3.27e14T^{2} \)
43 \( 1 - 2.34e7T + 5.02e14T^{2} \)
47 \( 1 + 1.96e7T + 1.11e15T^{2} \)
53 \( 1 - 8.41e7T + 3.29e15T^{2} \)
59 \( 1 + 7.51e7T + 8.66e15T^{2} \)
61 \( 1 - 5.29e7T + 1.16e16T^{2} \)
67 \( 1 - 1.37e8T + 2.72e16T^{2} \)
71 \( 1 + 3.28e8T + 4.58e16T^{2} \)
73 \( 1 + 2.17e8T + 5.88e16T^{2} \)
79 \( 1 - 2.26e8T + 1.19e17T^{2} \)
83 \( 1 + 2.45e8T + 1.86e17T^{2} \)
89 \( 1 - 1.80e8T + 3.50e17T^{2} \)
97 \( 1 + 3.85e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.04904719233437338036022007707, −11.27734275187878922148482597356, −10.60148964297346978706610069797, −8.393849210492640090775587799354, −6.95186532724292807329950040811, −6.07556134509474513744922988271, −4.94353969155180190866730386050, −4.06881969567614597666058745167, −2.81707418831635136005104752918, −1.17551097781652903446139097814, 1.17551097781652903446139097814, 2.81707418831635136005104752918, 4.06881969567614597666058745167, 4.94353969155180190866730386050, 6.07556134509474513744922988271, 6.95186532724292807329950040811, 8.393849210492640090775587799354, 10.60148964297346978706610069797, 11.27734275187878922148482597356, 12.04904719233437338036022007707

Graph of the $Z$-function along the critical line