L(s) = 1 | + (−0.391 − 1.46i)2-s + (−0.879 − 1.49i)3-s + (−0.246 + 0.142i)4-s + (1.82 − 1.29i)5-s + (−1.83 + 1.86i)6-s + (−1.17 + 2.36i)7-s + (−1.83 − 1.83i)8-s + (−1.45 + 2.62i)9-s + (−2.60 − 2.15i)10-s + (−0.791 + 0.457i)11-s + (0.429 + 0.243i)12-s + (3.07 − 3.07i)13-s + (3.92 + 0.791i)14-s + (−3.53 − 1.58i)15-s + (−2.24 + 3.88i)16-s + (1.16 + 0.311i)17-s + ⋯ |
L(s) = 1 | + (−0.276 − 1.03i)2-s + (−0.507 − 0.861i)3-s + (−0.123 + 0.0712i)4-s + (0.815 − 0.578i)5-s + (−0.749 + 0.762i)6-s + (−0.444 + 0.895i)7-s + (−0.648 − 0.648i)8-s + (−0.484 + 0.874i)9-s + (−0.822 − 0.682i)10-s + (−0.238 + 0.137i)11-s + (0.124 + 0.0702i)12-s + (0.854 − 0.854i)13-s + (1.04 + 0.211i)14-s + (−0.912 − 0.409i)15-s + (−0.561 + 0.971i)16-s + (0.281 + 0.0755i)17-s + ⋯ |
Λ(s)=(=(105s/2ΓC(s)L(s)(−0.710+0.704i)Λ(2−s)
Λ(s)=(=(105s/2ΓC(s+1/2)L(s)(−0.710+0.704i)Λ(1−s)
Degree: |
2 |
Conductor: |
105
= 3⋅5⋅7
|
Sign: |
−0.710+0.704i
|
Analytic conductor: |
0.838429 |
Root analytic conductor: |
0.915657 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ105(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 105, ( :1/2), −0.710+0.704i)
|
Particular Values
L(1) |
≈ |
0.331298−0.804514i |
L(21) |
≈ |
0.331298−0.804514i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.879+1.49i)T |
| 5 | 1+(−1.82+1.29i)T |
| 7 | 1+(1.17−2.36i)T |
good | 2 | 1+(0.391+1.46i)T+(−1.73+i)T2 |
| 11 | 1+(0.791−0.457i)T+(5.5−9.52i)T2 |
| 13 | 1+(−3.07+3.07i)T−13iT2 |
| 17 | 1+(−1.16−0.311i)T+(14.7+8.5i)T2 |
| 19 | 1+(−5.95−3.43i)T+(9.5+16.4i)T2 |
| 23 | 1+(1.88−0.505i)T+(19.9−11.5i)T2 |
| 29 | 1−2.72T+29T2 |
| 31 | 1+(2.31+4.01i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.774−0.207i)T+(32.0−18.5i)T2 |
| 41 | 1−0.922iT−41T2 |
| 43 | 1+(4.80−4.80i)T−43iT2 |
| 47 | 1+(−2.71−10.1i)T+(−40.7+23.5i)T2 |
| 53 | 1+(2.85−10.6i)T+(−45.8−26.5i)T2 |
| 59 | 1+(4.94+8.55i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.533+0.924i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.83−6.83i)T+(−58.0−33.5i)T2 |
| 71 | 1−0.557iT−71T2 |
| 73 | 1+(−2.10−0.564i)T+(63.2+36.5i)T2 |
| 79 | 1+(−2.62−1.51i)T+(39.5+68.4i)T2 |
| 83 | 1+(2.38+2.38i)T+83iT2 |
| 89 | 1+(5.64−9.78i)T+(−44.5−77.0i)T2 |
| 97 | 1+(1.58+1.58i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.86768900673364318847468579194, −12.39553590504107012548461111668, −11.42643746516770855696824855715, −10.26746456174484044721470634627, −9.344510785224519598349934695339, −8.038144938338322050800212712427, −6.22711759228484448306377298645, −5.55437632177330768590485965859, −2.87084453831115097566146032049, −1.38870816652073950795454864894,
3.36232665685655901241319687431, 5.25421233589555496593630846364, 6.38046539980900763529485975758, 7.14220743513215475832518816371, 8.833165568335685518595688298254, 9.828015966412588325421936373741, 10.81741786145503840120653668215, 11.79821094049667137042577187372, 13.61571878366485080399089341272, 14.27465968985452144741059649516