L(s) = 1 | + (−0.391 − 1.46i)2-s + (−0.879 − 1.49i)3-s + (−0.246 + 0.142i)4-s + (1.82 − 1.29i)5-s + (−1.83 + 1.86i)6-s + (−1.17 + 2.36i)7-s + (−1.83 − 1.83i)8-s + (−1.45 + 2.62i)9-s + (−2.60 − 2.15i)10-s + (−0.791 + 0.457i)11-s + (0.429 + 0.243i)12-s + (3.07 − 3.07i)13-s + (3.92 + 0.791i)14-s + (−3.53 − 1.58i)15-s + (−2.24 + 3.88i)16-s + (1.16 + 0.311i)17-s + ⋯ |
L(s) = 1 | + (−0.276 − 1.03i)2-s + (−0.507 − 0.861i)3-s + (−0.123 + 0.0712i)4-s + (0.815 − 0.578i)5-s + (−0.749 + 0.762i)6-s + (−0.444 + 0.895i)7-s + (−0.648 − 0.648i)8-s + (−0.484 + 0.874i)9-s + (−0.822 − 0.682i)10-s + (−0.238 + 0.137i)11-s + (0.124 + 0.0702i)12-s + (0.854 − 0.854i)13-s + (1.04 + 0.211i)14-s + (−0.912 − 0.409i)15-s + (−0.561 + 0.971i)16-s + (0.281 + 0.0755i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.710 + 0.704i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.710 + 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.331298 - 0.804514i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.331298 - 0.804514i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.879 + 1.49i)T \) |
| 5 | \( 1 + (-1.82 + 1.29i)T \) |
| 7 | \( 1 + (1.17 - 2.36i)T \) |
good | 2 | \( 1 + (0.391 + 1.46i)T + (-1.73 + i)T^{2} \) |
| 11 | \( 1 + (0.791 - 0.457i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.07 + 3.07i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.16 - 0.311i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-5.95 - 3.43i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.88 - 0.505i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 2.72T + 29T^{2} \) |
| 31 | \( 1 + (2.31 + 4.01i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.774 - 0.207i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 0.922iT - 41T^{2} \) |
| 43 | \( 1 + (4.80 - 4.80i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.71 - 10.1i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (2.85 - 10.6i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (4.94 + 8.55i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.533 + 0.924i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.83 - 6.83i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 0.557iT - 71T^{2} \) |
| 73 | \( 1 + (-2.10 - 0.564i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-2.62 - 1.51i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.38 + 2.38i)T + 83iT^{2} \) |
| 89 | \( 1 + (5.64 - 9.78i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.58 + 1.58i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.86768900673364318847468579194, −12.39553590504107012548461111668, −11.42643746516770855696824855715, −10.26746456174484044721470634627, −9.344510785224519598349934695339, −8.038144938338322050800212712427, −6.22711759228484448306377298645, −5.55437632177330768590485965859, −2.87084453831115097566146032049, −1.38870816652073950795454864894,
3.36232665685655901241319687431, 5.25421233589555496593630846364, 6.38046539980900763529485975758, 7.14220743513215475832518816371, 8.833165568335685518595688298254, 9.828015966412588325421936373741, 10.81741786145503840120653668215, 11.79821094049667137042577187372, 13.61571878366485080399089341272, 14.27465968985452144741059649516