L(s) = 1 | + (2.35 + 0.631i)2-s + (−1.54 + 0.775i)3-s + (3.42 + 1.97i)4-s + (−0.0540 − 2.23i)5-s + (−4.13 + 0.849i)6-s + (−1.91 + 1.82i)7-s + (3.36 + 3.36i)8-s + (1.79 − 2.40i)9-s + (1.28 − 5.30i)10-s + (−3.08 − 1.77i)11-s + (−6.83 − 0.406i)12-s + (1.28 − 1.28i)13-s + (−5.67 + 3.08i)14-s + (1.81 + 3.42i)15-s + (1.85 + 3.21i)16-s + (0.792 + 2.95i)17-s + ⋯ |
L(s) = 1 | + (1.66 + 0.446i)2-s + (−0.894 + 0.447i)3-s + (1.71 + 0.987i)4-s + (−0.0241 − 0.999i)5-s + (−1.68 + 0.346i)6-s + (−0.725 + 0.688i)7-s + (1.19 + 1.19i)8-s + (0.599 − 0.800i)9-s + (0.406 − 1.67i)10-s + (−0.928 − 0.536i)11-s + (−1.97 − 0.117i)12-s + (0.356 − 0.356i)13-s + (−1.51 + 0.823i)14-s + (0.469 + 0.883i)15-s + (0.463 + 0.803i)16-s + (0.192 + 0.717i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.62806 + 0.585717i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.62806 + 0.585717i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.54 - 0.775i)T \) |
| 5 | \( 1 + (0.0540 + 2.23i)T \) |
| 7 | \( 1 + (1.91 - 1.82i)T \) |
good | 2 | \( 1 + (-2.35 - 0.631i)T + (1.73 + i)T^{2} \) |
| 11 | \( 1 + (3.08 + 1.77i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.28 + 1.28i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.792 - 2.95i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.331 + 0.191i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.658 - 2.45i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 5.51T + 29T^{2} \) |
| 31 | \( 1 + (-0.323 + 0.561i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.34 - 5.00i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 10.1iT - 41T^{2} \) |
| 43 | \( 1 + (0.335 - 0.335i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.80 - 0.751i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (3.04 - 0.815i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-3.81 + 6.60i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.45 + 9.45i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-12.3 + 3.31i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 3.06iT - 71T^{2} \) |
| 73 | \( 1 + (0.849 + 3.17i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (3.21 - 1.85i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.973 + 0.973i)T + 83iT^{2} \) |
| 89 | \( 1 + (-1.51 - 2.63i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (10.3 + 10.3i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.60261886039178459235992854933, −12.80601086764414156635374259021, −12.25166257730708830343215997665, −11.20935306810921370871956843532, −9.780680426967857996457038678964, −8.180577503758516316971543172110, −6.38156973014447193831862892205, −5.63148947963667615192455781611, −4.77446497453703299763703119885, −3.35825673050670158052135747612,
2.57840070936464811318725115299, 4.11073559390851045737695272659, 5.47937492612628641895201661495, 6.60236395183664917839902528809, 7.31294601876405843772222570020, 10.21634446088090384657214377407, 10.76168491432123600880255555463, 11.82572555280642318453772648011, 12.66388240440585691984774421719, 13.58056449639412908991287292703