L(s) = 1 | + (2.35 + 0.631i)2-s + (−1.54 + 0.775i)3-s + (3.42 + 1.97i)4-s + (−0.0540 − 2.23i)5-s + (−4.13 + 0.849i)6-s + (−1.91 + 1.82i)7-s + (3.36 + 3.36i)8-s + (1.79 − 2.40i)9-s + (1.28 − 5.30i)10-s + (−3.08 − 1.77i)11-s + (−6.83 − 0.406i)12-s + (1.28 − 1.28i)13-s + (−5.67 + 3.08i)14-s + (1.81 + 3.42i)15-s + (1.85 + 3.21i)16-s + (0.792 + 2.95i)17-s + ⋯ |
L(s) = 1 | + (1.66 + 0.446i)2-s + (−0.894 + 0.447i)3-s + (1.71 + 0.987i)4-s + (−0.0241 − 0.999i)5-s + (−1.68 + 0.346i)6-s + (−0.725 + 0.688i)7-s + (1.19 + 1.19i)8-s + (0.599 − 0.800i)9-s + (0.406 − 1.67i)10-s + (−0.928 − 0.536i)11-s + (−1.97 − 0.117i)12-s + (0.356 − 0.356i)13-s + (−1.51 + 0.823i)14-s + (0.469 + 0.883i)15-s + (0.463 + 0.803i)16-s + (0.192 + 0.717i)17-s + ⋯ |
Λ(s)=(=(105s/2ΓC(s)L(s)(0.770−0.637i)Λ(2−s)
Λ(s)=(=(105s/2ΓC(s+1/2)L(s)(0.770−0.637i)Λ(1−s)
Degree: |
2 |
Conductor: |
105
= 3⋅5⋅7
|
Sign: |
0.770−0.637i
|
Analytic conductor: |
0.838429 |
Root analytic conductor: |
0.915657 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ105(32,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 105, ( :1/2), 0.770−0.637i)
|
Particular Values
L(1) |
≈ |
1.62806+0.585717i |
L(21) |
≈ |
1.62806+0.585717i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.54−0.775i)T |
| 5 | 1+(0.0540+2.23i)T |
| 7 | 1+(1.91−1.82i)T |
good | 2 | 1+(−2.35−0.631i)T+(1.73+i)T2 |
| 11 | 1+(3.08+1.77i)T+(5.5+9.52i)T2 |
| 13 | 1+(−1.28+1.28i)T−13iT2 |
| 17 | 1+(−0.792−2.95i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−0.331+0.191i)T+(9.5−16.4i)T2 |
| 23 | 1+(0.658−2.45i)T+(−19.9−11.5i)T2 |
| 29 | 1−5.51T+29T2 |
| 31 | 1+(−0.323+0.561i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.34−5.00i)T+(−32.0−18.5i)T2 |
| 41 | 1−10.1iT−41T2 |
| 43 | 1+(0.335−0.335i)T−43iT2 |
| 47 | 1+(−2.80−0.751i)T+(40.7+23.5i)T2 |
| 53 | 1+(3.04−0.815i)T+(45.8−26.5i)T2 |
| 59 | 1+(−3.81+6.60i)T+(−29.5−51.0i)T2 |
| 61 | 1+(5.45+9.45i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−12.3+3.31i)T+(58.0−33.5i)T2 |
| 71 | 1+3.06iT−71T2 |
| 73 | 1+(0.849+3.17i)T+(−63.2+36.5i)T2 |
| 79 | 1+(3.21−1.85i)T+(39.5−68.4i)T2 |
| 83 | 1+(0.973+0.973i)T+83iT2 |
| 89 | 1+(−1.51−2.63i)T+(−44.5+77.0i)T2 |
| 97 | 1+(10.3+10.3i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.60261886039178459235992854933, −12.80601086764414156635374259021, −12.25166257730708830343215997665, −11.20935306810921370871956843532, −9.780680426967857996457038678964, −8.180577503758516316971543172110, −6.38156973014447193831862892205, −5.63148947963667615192455781611, −4.77446497453703299763703119885, −3.35825673050670158052135747612,
2.57840070936464811318725115299, 4.11073559390851045737695272659, 5.47937492612628641895201661495, 6.60236395183664917839902528809, 7.31294601876405843772222570020, 10.21634446088090384657214377407, 10.76168491432123600880255555463, 11.82572555280642318453772648011, 12.66388240440585691984774421719, 13.58056449639412908991287292703