L(s) = 1 | + (0.0799 − 0.298i)2-s + (0.540 − 1.64i)3-s + (1.64 + 0.952i)4-s + (0.596 + 2.15i)5-s + (−0.447 − 0.292i)6-s + (−2.46 − 0.951i)7-s + (0.852 − 0.852i)8-s + (−2.41 − 1.77i)9-s + (0.690 − 0.00558i)10-s + (0.660 + 0.381i)11-s + (2.45 − 2.19i)12-s + (−2.27 − 2.27i)13-s + (−0.481 + 0.660i)14-s + (3.86 + 0.184i)15-s + (1.71 + 2.97i)16-s + (−4.69 + 1.25i)17-s + ⋯ |
L(s) = 1 | + (0.0565 − 0.210i)2-s + (0.312 − 0.950i)3-s + (0.824 + 0.476i)4-s + (0.266 + 0.963i)5-s + (−0.182 − 0.119i)6-s + (−0.933 − 0.359i)7-s + (0.301 − 0.301i)8-s + (−0.805 − 0.593i)9-s + (0.218 − 0.00176i)10-s + (0.199 + 0.114i)11-s + (0.709 − 0.634i)12-s + (−0.629 − 0.629i)13-s + (−0.128 + 0.176i)14-s + (0.998 + 0.0476i)15-s + (0.429 + 0.744i)16-s + (−1.13 + 0.305i)17-s + ⋯ |
Λ(s)=(=(105s/2ΓC(s)L(s)(0.873+0.487i)Λ(2−s)
Λ(s)=(=(105s/2ΓC(s+1/2)L(s)(0.873+0.487i)Λ(1−s)
Degree: |
2 |
Conductor: |
105
= 3⋅5⋅7
|
Sign: |
0.873+0.487i
|
Analytic conductor: |
0.838429 |
Root analytic conductor: |
0.915657 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ105(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 105, ( :1/2), 0.873+0.487i)
|
Particular Values
L(1) |
≈ |
1.20091−0.312429i |
L(21) |
≈ |
1.20091−0.312429i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.540+1.64i)T |
| 5 | 1+(−0.596−2.15i)T |
| 7 | 1+(2.46+0.951i)T |
good | 2 | 1+(−0.0799+0.298i)T+(−1.73−i)T2 |
| 11 | 1+(−0.660−0.381i)T+(5.5+9.52i)T2 |
| 13 | 1+(2.27+2.27i)T+13iT2 |
| 17 | 1+(4.69−1.25i)T+(14.7−8.5i)T2 |
| 19 | 1+(1.41−0.818i)T+(9.5−16.4i)T2 |
| 23 | 1+(−7.39−1.98i)T+(19.9+11.5i)T2 |
| 29 | 1+4.94T+29T2 |
| 31 | 1+(−2.96+5.13i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−3.41−0.915i)T+(32.0+18.5i)T2 |
| 41 | 1−4.35iT−41T2 |
| 43 | 1+(−2.69−2.69i)T+43iT2 |
| 47 | 1+(−1.10+4.14i)T+(−40.7−23.5i)T2 |
| 53 | 1+(1.79+6.71i)T+(−45.8+26.5i)T2 |
| 59 | 1+(−3.84+6.65i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.19+3.80i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.0126−0.0471i)T+(−58.0+33.5i)T2 |
| 71 | 1+12.4iT−71T2 |
| 73 | 1+(1.34−0.359i)T+(63.2−36.5i)T2 |
| 79 | 1+(−3.66+2.11i)T+(39.5−68.4i)T2 |
| 83 | 1+(5.05−5.05i)T−83iT2 |
| 89 | 1+(0.453+0.785i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3.73+3.73i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.25990574135713172067486611127, −12.91926529430470319018353159975, −11.60684736859995403691338299752, −10.74004565413189057121571730964, −9.456995753487573712577871588462, −7.80174373170695742902958436374, −6.92593539995165889238527396882, −6.23670208026834130883249928345, −3.42333967823018597516588761266, −2.36346477388012276580321747064,
2.56624740763306355575309366941, 4.54165344404402797406189813979, 5.70454355536339888806825482306, 6.98524833683424819563357942755, 8.823837211170176472227288131686, 9.415391442225670646725080961264, 10.57182402649436770339405091288, 11.65323785234021771127177527259, 12.87634642352758084308708352960, 14.02182893278758026657414443178