L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.41 − 2.44i)3-s + (−0.499 + 0.866i)4-s − 2.82·6-s + 0.999·8-s + (−2.49 − 4.33i)9-s + (0.5 − 0.866i)11-s + (1.41 + 2.44i)12-s − 4.24·13-s + (−0.5 − 0.866i)16-s + (−1.41 + 2.44i)17-s + (−2.5 + 4.33i)18-s + (−2.12 − 3.67i)19-s − 0.999·22-s + (−3 − 5.19i)23-s + (1.41 − 2.44i)24-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.816 − 1.41i)3-s + (−0.249 + 0.433i)4-s − 1.15·6-s + 0.353·8-s + (−0.833 − 1.44i)9-s + (0.150 − 0.261i)11-s + (0.408 + 0.707i)12-s − 1.17·13-s + (−0.125 − 0.216i)16-s + (−0.342 + 0.594i)17-s + (−0.589 + 1.02i)18-s + (−0.486 − 0.842i)19-s − 0.213·22-s + (−0.625 − 1.08i)23-s + (0.288 − 0.499i)24-s + ⋯ |
Λ(s)=(=(1078s/2ΓC(s)L(s)(−0.900−0.435i)Λ(2−s)
Λ(s)=(=(1078s/2ΓC(s+1/2)L(s)(−0.900−0.435i)Λ(1−s)
Degree: |
2 |
Conductor: |
1078
= 2⋅72⋅11
|
Sign: |
−0.900−0.435i
|
Analytic conductor: |
8.60787 |
Root analytic conductor: |
2.93391 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1078(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1078, ( :1/2), −0.900−0.435i)
|
Particular Values
L(1) |
≈ |
1.120151156 |
L(21) |
≈ |
1.120151156 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 7 | 1 |
| 11 | 1+(−0.5+0.866i)T |
good | 3 | 1+(−1.41+2.44i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−2.5+4.33i)T2 |
| 13 | 1+4.24T+13T2 |
| 17 | 1+(1.41−2.44i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.12+3.67i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+4T+29T2 |
| 31 | 1+(3.53−6.12i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1+1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+2.82T+41T2 |
| 43 | 1−10T+43T2 |
| 47 | 1+(6.36+11.0i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1−1.73i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−5.65+9.79i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.94+8.57i)T+(−30.5+52.8i)T2 |
| 67 | 1+(4−6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1−16T+71T2 |
| 73 | 1+(4.24−7.34i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−4−6.92i)T+(−39.5+68.4i)T2 |
| 83 | 1−12.7T+83T2 |
| 89 | 1+(−3.53−6.12i)T+(−44.5+77.0i)T2 |
| 97 | 1−7.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.171316356343740830047405349700, −8.558859488221935065722470645786, −7.919059253841763668079832475053, −7.00373500656771295472481831342, −6.45319301036509355692565872599, −4.96062900121633490672830171472, −3.70046234650284048089165966192, −2.52574081106356780936833481250, −1.97992678074676154169877537150, −0.47469420424988958869217618089,
2.11040485851714521394313151517, 3.38027428860066129907985008354, 4.32104686664175196371116493131, 5.06540838151111309884663631527, 6.00618605548551538378192941071, 7.39702067397034029106159043892, 7.83414443072269252509386446566, 9.037594107898982837976759381387, 9.376942397849247572567098136008, 10.00942849901404432893968260493