L(s) = 1 | + (−6.92 − 11.9i)5-s + (−15.3 + 26.5i)7-s + (−21.9 + 38.0i)11-s + (6.11 + 10.5i)13-s − 76.0·17-s − 44.1·19-s + (−39.3 − 68.0i)23-s + (−33.3 + 57.7i)25-s + (−46.3 + 80.3i)29-s + (71.5 + 123. i)31-s + 425.·35-s − 32.4·37-s + (−167. − 290. i)41-s + (249. − 431. i)43-s + (−140. + 244. i)47-s + ⋯ |
L(s) = 1 | + (−0.619 − 1.07i)5-s + (−0.829 + 1.43i)7-s + (−0.601 + 1.04i)11-s + (0.130 + 0.226i)13-s − 1.08·17-s − 0.533·19-s + (−0.356 − 0.617i)23-s + (−0.266 + 0.461i)25-s + (−0.297 + 0.514i)29-s + (0.414 + 0.717i)31-s + 2.05·35-s − 0.144·37-s + (−0.639 − 1.10i)41-s + (0.883 − 1.53i)43-s + (−0.437 + 0.757i)47-s + ⋯ |
Λ(s)=(=(108s/2ΓC(s)L(s)(−0.839−0.543i)Λ(4−s)
Λ(s)=(=(108s/2ΓC(s+3/2)L(s)(−0.839−0.543i)Λ(1−s)
Degree: |
2 |
Conductor: |
108
= 22⋅33
|
Sign: |
−0.839−0.543i
|
Analytic conductor: |
6.37220 |
Root analytic conductor: |
2.52432 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ108(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 108, ( :3/2), −0.839−0.543i)
|
Particular Values
L(2) |
≈ |
0.101381+0.342747i |
L(21) |
≈ |
0.101381+0.342747i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(6.92+11.9i)T+(−62.5+108.i)T2 |
| 7 | 1+(15.3−26.5i)T+(−171.5−297.i)T2 |
| 11 | 1+(21.9−38.0i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+(−6.11−10.5i)T+(−1.09e3+1.90e3i)T2 |
| 17 | 1+76.0T+4.91e3T2 |
| 19 | 1+44.1T+6.85e3T2 |
| 23 | 1+(39.3+68.0i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(46.3−80.3i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(−71.5−123.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+32.4T+5.06e4T2 |
| 41 | 1+(167.+290.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−249.+431.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(140.−244.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1−628.T+1.48e5T2 |
| 59 | 1+(−252.−437.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(185.−322.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−81.3−140.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+433.T+3.57e5T2 |
| 73 | 1+629.T+3.89e5T2 |
| 79 | 1+(86.3−149.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+(87.4−151.i)T+(−2.85e5−4.95e5i)T2 |
| 89 | 1+336.T+7.04e5T2 |
| 97 | 1+(42.1−73.0i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.29670154789053497155666878545, −12.43635733177369012877843130152, −12.01416624165151729026167647548, −10.40518937939229141855552676753, −9.042256222058445192317126145184, −8.550069334183797666421594853323, −6.94385304599567988726099320141, −5.50951495613372034614665174932, −4.31112586165925539767884154710, −2.34826370692623216874775066081,
0.18563660148585931195432112021, 3.04706328400482937573617197524, 4.10051637422683345070103402478, 6.20517444479461668825884209700, 7.14747505049895992718645475207, 8.169109422463150787506551977660, 9.853130978317407017011754922790, 10.78991264197072477671999815237, 11.38700439896862608137036464759, 13.15281951288851388844291446793