L(s) = 1 | + (−6.92 − 11.9i)5-s + (−15.3 + 26.5i)7-s + (−21.9 + 38.0i)11-s + (6.11 + 10.5i)13-s − 76.0·17-s − 44.1·19-s + (−39.3 − 68.0i)23-s + (−33.3 + 57.7i)25-s + (−46.3 + 80.3i)29-s + (71.5 + 123. i)31-s + 425.·35-s − 32.4·37-s + (−167. − 290. i)41-s + (249. − 431. i)43-s + (−140. + 244. i)47-s + ⋯ |
L(s) = 1 | + (−0.619 − 1.07i)5-s + (−0.829 + 1.43i)7-s + (−0.601 + 1.04i)11-s + (0.130 + 0.226i)13-s − 1.08·17-s − 0.533·19-s + (−0.356 − 0.617i)23-s + (−0.266 + 0.461i)25-s + (−0.297 + 0.514i)29-s + (0.414 + 0.717i)31-s + 2.05·35-s − 0.144·37-s + (−0.639 − 1.10i)41-s + (0.883 − 1.53i)43-s + (−0.437 + 0.757i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.839 - 0.543i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.839 - 0.543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.101381 + 0.342747i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.101381 + 0.342747i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (6.92 + 11.9i)T + (-62.5 + 108. i)T^{2} \) |
| 7 | \( 1 + (15.3 - 26.5i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (21.9 - 38.0i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-6.11 - 10.5i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 76.0T + 4.91e3T^{2} \) |
| 19 | \( 1 + 44.1T + 6.85e3T^{2} \) |
| 23 | \( 1 + (39.3 + 68.0i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (46.3 - 80.3i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-71.5 - 123. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + 32.4T + 5.06e4T^{2} \) |
| 41 | \( 1 + (167. + 290. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-249. + 431. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (140. - 244. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 628.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-252. - 437. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (185. - 322. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-81.3 - 140. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 433.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 629.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (86.3 - 149. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (87.4 - 151. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 336.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (42.1 - 73.0i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.29670154789053497155666878545, −12.43635733177369012877843130152, −12.01416624165151729026167647548, −10.40518937939229141855552676753, −9.042256222058445192317126145184, −8.550069334183797666421594853323, −6.94385304599567988726099320141, −5.50951495613372034614665174932, −4.31112586165925539767884154710, −2.34826370692623216874775066081,
0.18563660148585931195432112021, 3.04706328400482937573617197524, 4.10051637422683345070103402478, 6.20517444479461668825884209700, 7.14747505049895992718645475207, 8.169109422463150787506551977660, 9.853130978317407017011754922790, 10.78991264197072477671999815237, 11.38700439896862608137036464759, 13.15281951288851388844291446793