L(s) = 1 | + (0.986 + 1.01i)2-s + (−0.0536 + 1.99i)4-s + (0.569 + 2.16i)5-s − 4.64i·7-s + (−2.07 + 1.91i)8-s + (−1.62 + 2.71i)10-s + 3.44i·11-s − 2.72·13-s + (4.70 − 4.58i)14-s + (−3.99 − 0.214i)16-s + 2.43i·17-s + 7.45i·19-s + (−4.35 + 1.02i)20-s + (−3.49 + 3.40i)22-s + 6.60i·23-s + ⋯ |
L(s) = 1 | + (0.697 + 0.716i)2-s + (−0.0268 + 0.999i)4-s + (0.254 + 0.967i)5-s − 1.75i·7-s + (−0.734 + 0.678i)8-s + (−0.515 + 0.857i)10-s + 1.04i·11-s − 0.756·13-s + (1.25 − 1.22i)14-s + (−0.998 − 0.0536i)16-s + 0.589i·17-s + 1.71i·19-s + (−0.973 + 0.228i)20-s + (−0.745 + 0.725i)22-s + 1.37i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.842 - 0.538i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.842 - 0.538i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.964764437\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.964764437\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.986 - 1.01i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.569 - 2.16i)T \) |
good | 7 | \( 1 + 4.64iT - 7T^{2} \) |
| 11 | \( 1 - 3.44iT - 11T^{2} \) |
| 13 | \( 1 + 2.72T + 13T^{2} \) |
| 17 | \( 1 - 2.43iT - 17T^{2} \) |
| 19 | \( 1 - 7.45iT - 19T^{2} \) |
| 23 | \( 1 - 6.60iT - 23T^{2} \) |
| 29 | \( 1 - 0.952iT - 29T^{2} \) |
| 31 | \( 1 - 5.77T + 31T^{2} \) |
| 37 | \( 1 + 0.0145T + 37T^{2} \) |
| 41 | \( 1 + 4.42T + 41T^{2} \) |
| 43 | \( 1 - 6.83T + 43T^{2} \) |
| 47 | \( 1 + 6.05iT - 47T^{2} \) |
| 53 | \( 1 - 4.54T + 53T^{2} \) |
| 59 | \( 1 + 9.70iT - 59T^{2} \) |
| 61 | \( 1 + 1.57iT - 61T^{2} \) |
| 67 | \( 1 + 7.29T + 67T^{2} \) |
| 71 | \( 1 - 12.8T + 71T^{2} \) |
| 73 | \( 1 + 3.38iT - 73T^{2} \) |
| 79 | \( 1 - 5.03T + 79T^{2} \) |
| 83 | \( 1 - 12.7T + 83T^{2} \) |
| 89 | \( 1 + 0.535T + 89T^{2} \) |
| 97 | \( 1 + 9.22iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13995991557257570672743158106, −9.665319228395225908899290567537, −8.031641621719695150369037312552, −7.50294083746188614974185496306, −6.93857195397476555893406225616, −6.14772598763904292472765768697, −5.03137720381482574621141447806, −3.99824514251666719118562227499, −3.44325897926375727427385580984, −1.93540297860211649805978723334,
0.67372367963921988384205420468, 2.36892780386866881834883803334, 2.82823069831562384026982712034, 4.49079869452696990202002049359, 5.11073630575253756317192518339, 5.81934245120763706174793328903, 6.63104001085756141233163070395, 8.239725461913265919165067738692, 9.067231051939804998554040323778, 9.304169329193810710300243473268