L(s) = 1 | + (−0.5 + 0.866i)5-s + (−2.5 − 4.33i)11-s − 3·17-s + 5·19-s + (3 − 5.19i)23-s + (−0.499 − 0.866i)25-s + (−5 − 8.66i)29-s + (1 − 1.73i)31-s + 4·37-s + (−1.5 + 2.59i)41-s + (−1.5 − 2.59i)43-s + (2 + 3.46i)47-s + (3.5 − 6.06i)49-s + 6·53-s + 5·55-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (−0.753 − 1.30i)11-s − 0.727·17-s + 1.14·19-s + (0.625 − 1.08i)23-s + (−0.0999 − 0.173i)25-s + (−0.928 − 1.60i)29-s + (0.179 − 0.311i)31-s + 0.657·37-s + (−0.234 + 0.405i)41-s + (−0.228 − 0.396i)43-s + (0.291 + 0.505i)47-s + (0.5 − 0.866i)49-s + 0.824·53-s + 0.674·55-s + ⋯ |
Λ(s)=(=(1080s/2ΓC(s)L(s)(0.173+0.984i)Λ(2−s)
Λ(s)=(=(1080s/2ΓC(s+1/2)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
1080
= 23⋅33⋅5
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
8.62384 |
Root analytic conductor: |
2.93663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1080(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1080, ( :1/2), 0.173+0.984i)
|
Particular Values
L(1) |
≈ |
1.147481398 |
L(21) |
≈ |
1.147481398 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 7 | 1+(−3.5+6.06i)T2 |
| 11 | 1+(2.5+4.33i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−6.5−11.2i)T2 |
| 17 | 1+3T+17T2 |
| 19 | 1−5T+19T2 |
| 23 | 1+(−3+5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(5+8.66i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1+1.73i)T+(−15.5−26.8i)T2 |
| 37 | 1−4T+37T2 |
| 41 | 1+(1.5−2.59i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.5+2.59i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−2−3.46i)T+(−23.5+40.7i)T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+(1.5−2.59i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1+1.73i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.5+9.52i)T+(−33.5−58.0i)T2 |
| 71 | 1−14T+71T2 |
| 73 | 1+15T+73T2 |
| 79 | 1+(5+8.66i)T+(−39.5+68.4i)T2 |
| 83 | 1+(6+10.3i)T+(−41.5+71.8i)T2 |
| 89 | 1+14T+89T2 |
| 97 | 1+(−6.5−11.2i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.737554885136418086752983568606, −8.788706251432360872705215774460, −8.049922546873995106559747221301, −7.26834966634586408410464585410, −6.25184013947492097002411658442, −5.51186283950166454204954400442, −4.39603607525990205970093455395, −3.29675854143894482553301155332, −2.41506223502220968744004461809, −0.52786423627989410920559634578,
1.44122129871668389146920094671, 2.74230156776671143086075635522, 3.94209518255421705959660601965, 4.98099160613752284386215235684, 5.54365566509771538340622420165, 7.07016566737228500032490693960, 7.36291071449708716212659163074, 8.448724820006663224210405519239, 9.315041163704273039579873028536, 9.923563652643577875310518289806