Properties

Label 2-1080-9.7-c1-0-4
Degree 22
Conductor 10801080
Sign 0.6420.766i0.642 - 0.766i
Analytic cond. 8.623848.62384
Root an. cond. 2.936632.93663
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)5-s + (−0.133 + 0.232i)7-s + (−0.732 + 1.26i)11-s + (2.73 + 4.73i)13-s − 0.535·17-s − 2·19-s + (1.86 + 3.23i)23-s + (−0.499 + 0.866i)25-s + (0.767 − 1.33i)29-s + (1 + 1.73i)31-s + 0.267·35-s + 10.3·37-s + (4.96 + 8.59i)41-s + (2.26 − 3.92i)43-s + (0.133 − 0.232i)47-s + ⋯
L(s)  = 1  + (−0.223 − 0.387i)5-s + (−0.0506 + 0.0877i)7-s + (−0.220 + 0.382i)11-s + (0.757 + 1.31i)13-s − 0.129·17-s − 0.458·19-s + (0.389 + 0.673i)23-s + (−0.0999 + 0.173i)25-s + (0.142 − 0.246i)29-s + (0.179 + 0.311i)31-s + 0.0452·35-s + 1.70·37-s + (0.775 + 1.34i)41-s + (0.345 − 0.599i)43-s + (0.0195 − 0.0338i)47-s + ⋯

Functional equation

Λ(s)=(1080s/2ΓC(s)L(s)=((0.6420.766i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1080s/2ΓC(s+1/2)L(s)=((0.6420.766i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 10801080    =    233352^{3} \cdot 3^{3} \cdot 5
Sign: 0.6420.766i0.642 - 0.766i
Analytic conductor: 8.623848.62384
Root analytic conductor: 2.936632.93663
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1080(721,)\chi_{1080} (721, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1080, ( :1/2), 0.6420.766i)(2,\ 1080,\ (\ :1/2),\ 0.642 - 0.766i)

Particular Values

L(1)L(1) \approx 1.4208732801.420873280
L(12)L(\frac12) \approx 1.4208732801.420873280
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
good7 1+(0.1330.232i)T+(3.56.06i)T2 1 + (0.133 - 0.232i)T + (-3.5 - 6.06i)T^{2}
11 1+(0.7321.26i)T+(5.59.52i)T2 1 + (0.732 - 1.26i)T + (-5.5 - 9.52i)T^{2}
13 1+(2.734.73i)T+(6.5+11.2i)T2 1 + (-2.73 - 4.73i)T + (-6.5 + 11.2i)T^{2}
17 1+0.535T+17T2 1 + 0.535T + 17T^{2}
19 1+2T+19T2 1 + 2T + 19T^{2}
23 1+(1.863.23i)T+(11.5+19.9i)T2 1 + (-1.86 - 3.23i)T + (-11.5 + 19.9i)T^{2}
29 1+(0.767+1.33i)T+(14.525.1i)T2 1 + (-0.767 + 1.33i)T + (-14.5 - 25.1i)T^{2}
31 1+(11.73i)T+(15.5+26.8i)T2 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2}
37 110.3T+37T2 1 - 10.3T + 37T^{2}
41 1+(4.968.59i)T+(20.5+35.5i)T2 1 + (-4.96 - 8.59i)T + (-20.5 + 35.5i)T^{2}
43 1+(2.26+3.92i)T+(21.537.2i)T2 1 + (-2.26 + 3.92i)T + (-21.5 - 37.2i)T^{2}
47 1+(0.133+0.232i)T+(23.540.7i)T2 1 + (-0.133 + 0.232i)T + (-23.5 - 40.7i)T^{2}
53 1+6T+53T2 1 + 6T + 53T^{2}
59 1+(7.1912.4i)T+(29.5+51.0i)T2 1 + (-7.19 - 12.4i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.23+7.33i)T+(30.552.8i)T2 1 + (-4.23 + 7.33i)T + (-30.5 - 52.8i)T^{2}
67 1+(3.13+5.42i)T+(33.5+58.0i)T2 1 + (3.13 + 5.42i)T + (-33.5 + 58.0i)T^{2}
71 1+9.46T+71T2 1 + 9.46T + 71T^{2}
73 16.92T+73T2 1 - 6.92T + 73T^{2}
79 1+(7.7313.3i)T+(39.568.4i)T2 1 + (7.73 - 13.3i)T + (-39.5 - 68.4i)T^{2}
83 1+(6.5911.4i)T+(41.571.8i)T2 1 + (6.59 - 11.4i)T + (-41.5 - 71.8i)T^{2}
89 19.92T+89T2 1 - 9.92T + 89T^{2}
97 1+(4.46+7.73i)T+(48.584.0i)T2 1 + (-4.46 + 7.73i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.806931992677797036668577188189, −9.190980676044023226876661899040, −8.408966440346788438269774490046, −7.53774525947224234439202795260, −6.61614939482827803528372994325, −5.79887547590887106877400891688, −4.61393647928144339991092765374, −3.99304315006105007549912713048, −2.60941583153541078735310266873, −1.31124414336993506038135382249, 0.71125349592176876464873192494, 2.49723374115607971705597028005, 3.42157947195890448104651927741, 4.44027596240149613295539198232, 5.63035085610172494694306802839, 6.30369870221744823030939251627, 7.34229469200416557172322559908, 8.138216893104451471742300746311, 8.797824898149567238167237228235, 9.892501823768718525558132072191

Graph of the ZZ-function along the critical line