L(s) = 1 | + (−0.5 − 0.866i)5-s + (−0.133 + 0.232i)7-s + (−0.732 + 1.26i)11-s + (2.73 + 4.73i)13-s − 0.535·17-s − 2·19-s + (1.86 + 3.23i)23-s + (−0.499 + 0.866i)25-s + (0.767 − 1.33i)29-s + (1 + 1.73i)31-s + 0.267·35-s + 10.3·37-s + (4.96 + 8.59i)41-s + (2.26 − 3.92i)43-s + (0.133 − 0.232i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.0506 + 0.0877i)7-s + (−0.220 + 0.382i)11-s + (0.757 + 1.31i)13-s − 0.129·17-s − 0.458·19-s + (0.389 + 0.673i)23-s + (−0.0999 + 0.173i)25-s + (0.142 − 0.246i)29-s + (0.179 + 0.311i)31-s + 0.0452·35-s + 1.70·37-s + (0.775 + 1.34i)41-s + (0.345 − 0.599i)43-s + (0.0195 − 0.0338i)47-s + ⋯ |
Λ(s)=(=(1080s/2ΓC(s)L(s)(0.642−0.766i)Λ(2−s)
Λ(s)=(=(1080s/2ΓC(s+1/2)L(s)(0.642−0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
1080
= 23⋅33⋅5
|
Sign: |
0.642−0.766i
|
Analytic conductor: |
8.62384 |
Root analytic conductor: |
2.93663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1080(721,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1080, ( :1/2), 0.642−0.766i)
|
Particular Values
L(1) |
≈ |
1.420873280 |
L(21) |
≈ |
1.420873280 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(0.133−0.232i)T+(−3.5−6.06i)T2 |
| 11 | 1+(0.732−1.26i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.73−4.73i)T+(−6.5+11.2i)T2 |
| 17 | 1+0.535T+17T2 |
| 19 | 1+2T+19T2 |
| 23 | 1+(−1.86−3.23i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.767+1.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−1−1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1−10.3T+37T2 |
| 41 | 1+(−4.96−8.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.26+3.92i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.133+0.232i)T+(−23.5−40.7i)T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+(−7.19−12.4i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.23+7.33i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.13+5.42i)T+(−33.5+58.0i)T2 |
| 71 | 1+9.46T+71T2 |
| 73 | 1−6.92T+73T2 |
| 79 | 1+(7.73−13.3i)T+(−39.5−68.4i)T2 |
| 83 | 1+(6.59−11.4i)T+(−41.5−71.8i)T2 |
| 89 | 1−9.92T+89T2 |
| 97 | 1+(−4.46+7.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.806931992677797036668577188189, −9.190980676044023226876661899040, −8.408966440346788438269774490046, −7.53774525947224234439202795260, −6.61614939482827803528372994325, −5.79887547590887106877400891688, −4.61393647928144339991092765374, −3.99304315006105007549912713048, −2.60941583153541078735310266873, −1.31124414336993506038135382249,
0.71125349592176876464873192494, 2.49723374115607971705597028005, 3.42157947195890448104651927741, 4.44027596240149613295539198232, 5.63035085610172494694306802839, 6.30369870221744823030939251627, 7.34229469200416557172322559908, 8.138216893104451471742300746311, 8.797824898149567238167237228235, 9.892501823768718525558132072191