L(s) = 1 | + (0.5 + 0.866i)5-s + (−1.51 + 2.63i)7-s + (2.63 − 4.56i)11-s + (0.256 + 0.444i)13-s − 2.80·17-s + 8.29·19-s + (2.51 + 4.36i)23-s + (−0.499 + 0.866i)25-s + (−2.39 + 4.14i)29-s + (4.29 + 7.43i)31-s − 3.03·35-s − 6.58·37-s + (3.99 + 6.91i)41-s + (0.598 − 1.03i)43-s + (−4.81 + 8.33i)47-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (−0.573 + 0.994i)7-s + (0.794 − 1.37i)11-s + (0.0712 + 0.123i)13-s − 0.679·17-s + 1.90·19-s + (0.525 + 0.909i)23-s + (−0.0999 + 0.173i)25-s + (−0.444 + 0.769i)29-s + (0.771 + 1.33i)31-s − 0.513·35-s − 1.08·37-s + (0.623 + 1.07i)41-s + (0.0912 − 0.158i)43-s + (−0.701 + 1.21i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.534 - 0.845i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.534 - 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.596529119\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.596529119\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (1.51 - 2.63i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.63 + 4.56i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.256 - 0.444i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 2.80T + 17T^{2} \) |
| 19 | \( 1 - 8.29T + 19T^{2} \) |
| 23 | \( 1 + (-2.51 - 4.36i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.39 - 4.14i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.29 - 7.43i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6.58T + 37T^{2} \) |
| 41 | \( 1 + (-3.99 - 6.91i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.598 + 1.03i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.81 - 8.33i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 0.467T + 53T^{2} \) |
| 59 | \( 1 + (0.378 + 0.655i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.135 + 0.234i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.63 - 6.28i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.48T + 71T^{2} \) |
| 73 | \( 1 - 5.31T + 73T^{2} \) |
| 79 | \( 1 + (-7.98 + 13.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.03 + 10.4i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 15.2T + 89T^{2} \) |
| 97 | \( 1 + (-3.18 + 5.51i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.819453509349294077667756726191, −9.143703599468462339957572835677, −8.632047972397084248867652802601, −7.42532551704010516078424386175, −6.52249681075228034641331959308, −5.84825397654838406412019845911, −5.02220545896374828138578225136, −3.40635590676707286282630290763, −2.98480513845315864950342964793, −1.34894203617498501371268379662,
0.807043190675535263428212814719, 2.20460495403976045166222154837, 3.65098772228256461860620859824, 4.41445566440129939131419066212, 5.37211071301094871190215153615, 6.61314663872479932932612697688, 7.10802274940091374519986875758, 7.997405322469064842544073877799, 9.204902794087359667972631253409, 9.687439309129396968701641743923