L(s) = 1 | − 2-s + 36·3-s − 37·4-s − 8·5-s − 36·6-s − 142·7-s + 97·8-s + 810·9-s + 8·10-s − 714·11-s − 1.33e3·12-s + 74·13-s + 142·14-s − 288·15-s − 509·16-s − 3.69e3·17-s − 810·18-s + 296·20-s − 5.11e3·21-s + 714·22-s + 862·23-s + 3.49e3·24-s − 4.57e3·25-s − 74·26-s + 1.45e4·27-s + 5.25e3·28-s − 992·29-s + ⋯ |
L(s) = 1 | − 0.176·2-s + 2.30·3-s − 1.15·4-s − 0.143·5-s − 0.408·6-s − 1.09·7-s + 0.535·8-s + 10/3·9-s + 0.0252·10-s − 1.77·11-s − 2.67·12-s + 0.121·13-s + 0.193·14-s − 0.330·15-s − 0.497·16-s − 3.09·17-s − 0.589·18-s + 0.165·20-s − 2.52·21-s + 0.314·22-s + 0.339·23-s + 1.23·24-s − 1.46·25-s − 0.0214·26-s + 3.84·27-s + 1.26·28-s − 0.219·29-s + ⋯ |
Λ(s)=(=((34⋅198)s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=((34⋅198)s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅198
|
Sign: |
1
|
Analytic conductor: |
9.10240×108 |
Root analytic conductor: |
13.1793 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 34⋅198, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−p2T)4 |
| 19 | | 1 |
good | 2 | C2≀S4 | 1+T+19pT2−11pT3+449p2T4−11p6T5+19p11T6+p15T7+p20T8 |
| 5 | C2≀S4 | 1+8T+4641T2+522T3+15201088T4+522p5T5+4641p10T6+8p15T7+p20T8 |
| 7 | C2≀S4 | 1+142T+35741T2+6055818T3+627818036T4+6055818p5T5+35741p10T6+142p15T7+p20T8 |
| 11 | C2≀S4 | 1+714T+448453T2+212157030T3+100726171004T4+212157030p5T5+448453p10T6+714p15T7+p20T8 |
| 13 | C2≀S4 | 1−74T+390128T2+2718186pT3+172797581198T4+2718186p6T5+390128p10T6−74p15T7+p20T8 |
| 17 | C2≀S4 | 1+3690T+10315729T2+17980630638T3+25584452309804T4+17980630638p5T5+10315729p10T6+3690p15T7+p20T8 |
| 23 | C2≀S4 | 1−862T+13814372T2−19547784758T3+113350258181846T4−19547784758p5T5+13814372p10T6−862p15T7+p20T8 |
| 29 | C2≀S4 | 1+992T+35667164T2+1709314400pT3+734484878068310T4+1709314400p6T5+35667164p10T6+992p15T7+p20T8 |
| 31 | C2≀S4 | 1−7382T+68912048T2−398657804358T3+2433438794556542T4−398657804358p5T5+68912048p10T6−7382p15T7+p20T8 |
| 37 | C2≀S4 | 1+19114T+9619124pT2+3763460276310T3+38837605627427894T4+3763460276310p5T5+9619124p11T6+19114p15T7+p20T8 |
| 41 | C2≀S4 | 1−5792T+184730688T2−1152962318688T3+35974773285629662T4−1152962318688p5T5+184730688p10T6−5792p15T7+p20T8 |
| 43 | C2≀S4 | 1+18634T+623524237T2+7714523409682T3+140468611843393948T4+7714523409682p5T5+623524237p10T6+18634p15T7+p20T8 |
| 47 | C2≀S4 | 1+35424T+1120098161T2+21848880105198T3+400407438721749108T4+21848880105198p5T5+1120098161p10T6+35424p15T7+p20T8 |
| 53 | C2≀S4 | 1−20256T+1403246860T2−19678903472736T3+818825687021028566T4−19678903472736p5T5+1403246860p10T6−20256p15T7+p20T8 |
| 59 | C2≀S4 | 1−76944T+4275207964T2−165416309409936T3+5007067871234044790T4−165416309409936p5T5+4275207964p10T6−76944p15T7+p20T8 |
| 61 | C2≀S4 | 1−11562T+2658185633T2−22203715050858T3+3131191588175453292T4−22203715050858p5T5+2658185633p10T6−11562p15T7+p20T8 |
| 67 | C2≀S4 | 1−110044T+8559033868T2−454486933448572T3+19453088667414801526T4−454486933448572p5T5+8559033868p10T6−110044p15T7+p20T8 |
| 71 | C2≀S4 | 1−71184T+2740541228T2−50169050116560T3+1927900005464350854T4−50169050116560p5T5+2740541228p10T6−71184p15T7+p20T8 |
| 73 | C2≀S4 | 1+138830T+14250815833T2+933095031511802T3+50238501223226001580T4+933095031511802p5T5+14250815833p10T6+138830p15T7+p20T8 |
| 79 | C2≀S4 | 1−59470T+2671253396T2+110704118014410T3−5424305011173132394T4+110704118014410p5T5+2671253396p10T6−59470p15T7+p20T8 |
| 83 | C2≀S4 | 1+191600T+26105339628T2+2374053004024560T3+17⋯58T4+2374053004024560p5T5+26105339628p10T6+191600p15T7+p20T8 |
| 89 | C2≀S4 | 1+158920T+19242878460T2+1772160038528184T3+15⋯58T4+1772160038528184p5T5+19242878460p10T6+158920p15T7+p20T8 |
| 97 | C2≀S4 | 1+47460T+30660377492T2+1213862934386844T3+37⋯30T4+1213862934386844p5T5+30660377492p10T6+47460p15T7+p20T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.90469963380845185744929662125, −6.73655453604572571852581987658, −6.57853585080754224334604869196, −6.07607774038294143172760149429, −5.96700091963856050016608607066, −5.54314279787561233059408617971, −5.21774333059564280829029020809, −5.00369585269591043171477730822, −4.99369125129293065654370007501, −4.51844401243956478034409314959, −4.44902178681620811872317105957, −4.27880778806936406504839403627, −3.84382623614995440227751968004, −3.73958523140937303457389658007, −3.54724362005096921113186812931, −3.27536878444024553938185776667, −3.00145777916894975989453214451, −2.52257604945653301922592626349, −2.51327375339796087185632981849, −2.35360073910634656365312358778, −2.06731655320669800613842470062, −1.80080843472178054560564813602, −1.49660034736858602648140128618, −1.07741445426476957570259051858, −0.73240527763168022963818017047, 0, 0, 0, 0,
0.73240527763168022963818017047, 1.07741445426476957570259051858, 1.49660034736858602648140128618, 1.80080843472178054560564813602, 2.06731655320669800613842470062, 2.35360073910634656365312358778, 2.51327375339796087185632981849, 2.52257604945653301922592626349, 3.00145777916894975989453214451, 3.27536878444024553938185776667, 3.54724362005096921113186812931, 3.73958523140937303457389658007, 3.84382623614995440227751968004, 4.27880778806936406504839403627, 4.44902178681620811872317105957, 4.51844401243956478034409314959, 4.99369125129293065654370007501, 5.00369585269591043171477730822, 5.21774333059564280829029020809, 5.54314279787561233059408617971, 5.96700091963856050016608607066, 6.07607774038294143172760149429, 6.57853585080754224334604869196, 6.73655453604572571852581987658, 6.90469963380845185744929662125