Properties

Label 8-1083e4-1.1-c5e4-0-0
Degree $8$
Conductor $1.376\times 10^{12}$
Sign $1$
Analytic cond. $9.10240\times 10^{8}$
Root an. cond. $13.1793$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 36·3-s − 37·4-s − 8·5-s − 36·6-s − 142·7-s + 97·8-s + 810·9-s + 8·10-s − 714·11-s − 1.33e3·12-s + 74·13-s + 142·14-s − 288·15-s − 509·16-s − 3.69e3·17-s − 810·18-s + 296·20-s − 5.11e3·21-s + 714·22-s + 862·23-s + 3.49e3·24-s − 4.57e3·25-s − 74·26-s + 1.45e4·27-s + 5.25e3·28-s − 992·29-s + ⋯
L(s)  = 1  − 0.176·2-s + 2.30·3-s − 1.15·4-s − 0.143·5-s − 0.408·6-s − 1.09·7-s + 0.535·8-s + 10/3·9-s + 0.0252·10-s − 1.77·11-s − 2.67·12-s + 0.121·13-s + 0.193·14-s − 0.330·15-s − 0.497·16-s − 3.09·17-s − 0.589·18-s + 0.165·20-s − 2.52·21-s + 0.314·22-s + 0.339·23-s + 1.23·24-s − 1.46·25-s − 0.0214·26-s + 3.84·27-s + 1.26·28-s − 0.219·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 19^{8}\)
Sign: $1$
Analytic conductor: \(9.10240\times 10^{8}\)
Root analytic conductor: \(13.1793\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{4} \cdot 19^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{2} T )^{4} \)
19 \( 1 \)
good2$C_2 \wr S_4$ \( 1 + T + 19 p T^{2} - 11 p T^{3} + 449 p^{2} T^{4} - 11 p^{6} T^{5} + 19 p^{11} T^{6} + p^{15} T^{7} + p^{20} T^{8} \)
5$C_2 \wr S_4$ \( 1 + 8 T + 4641 T^{2} + 522 T^{3} + 15201088 T^{4} + 522 p^{5} T^{5} + 4641 p^{10} T^{6} + 8 p^{15} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 142 T + 35741 T^{2} + 6055818 T^{3} + 627818036 T^{4} + 6055818 p^{5} T^{5} + 35741 p^{10} T^{6} + 142 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 714 T + 448453 T^{2} + 212157030 T^{3} + 100726171004 T^{4} + 212157030 p^{5} T^{5} + 448453 p^{10} T^{6} + 714 p^{15} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 74 T + 390128 T^{2} + 2718186 p T^{3} + 172797581198 T^{4} + 2718186 p^{6} T^{5} + 390128 p^{10} T^{6} - 74 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 3690 T + 10315729 T^{2} + 17980630638 T^{3} + 25584452309804 T^{4} + 17980630638 p^{5} T^{5} + 10315729 p^{10} T^{6} + 3690 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 862 T + 13814372 T^{2} - 19547784758 T^{3} + 113350258181846 T^{4} - 19547784758 p^{5} T^{5} + 13814372 p^{10} T^{6} - 862 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 992 T + 35667164 T^{2} + 1709314400 p T^{3} + 734484878068310 T^{4} + 1709314400 p^{6} T^{5} + 35667164 p^{10} T^{6} + 992 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 7382 T + 68912048 T^{2} - 398657804358 T^{3} + 2433438794556542 T^{4} - 398657804358 p^{5} T^{5} + 68912048 p^{10} T^{6} - 7382 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 19114 T + 9619124 p T^{2} + 3763460276310 T^{3} + 38837605627427894 T^{4} + 3763460276310 p^{5} T^{5} + 9619124 p^{11} T^{6} + 19114 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 5792 T + 184730688 T^{2} - 1152962318688 T^{3} + 35974773285629662 T^{4} - 1152962318688 p^{5} T^{5} + 184730688 p^{10} T^{6} - 5792 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 18634 T + 623524237 T^{2} + 7714523409682 T^{3} + 140468611843393948 T^{4} + 7714523409682 p^{5} T^{5} + 623524237 p^{10} T^{6} + 18634 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 35424 T + 1120098161 T^{2} + 21848880105198 T^{3} + 400407438721749108 T^{4} + 21848880105198 p^{5} T^{5} + 1120098161 p^{10} T^{6} + 35424 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 20256 T + 1403246860 T^{2} - 19678903472736 T^{3} + 818825687021028566 T^{4} - 19678903472736 p^{5} T^{5} + 1403246860 p^{10} T^{6} - 20256 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 76944 T + 4275207964 T^{2} - 165416309409936 T^{3} + 5007067871234044790 T^{4} - 165416309409936 p^{5} T^{5} + 4275207964 p^{10} T^{6} - 76944 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 - 11562 T + 2658185633 T^{2} - 22203715050858 T^{3} + 3131191588175453292 T^{4} - 22203715050858 p^{5} T^{5} + 2658185633 p^{10} T^{6} - 11562 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 110044 T + 8559033868 T^{2} - 454486933448572 T^{3} + 19453088667414801526 T^{4} - 454486933448572 p^{5} T^{5} + 8559033868 p^{10} T^{6} - 110044 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 71184 T + 2740541228 T^{2} - 50169050116560 T^{3} + 1927900005464350854 T^{4} - 50169050116560 p^{5} T^{5} + 2740541228 p^{10} T^{6} - 71184 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 138830 T + 14250815833 T^{2} + 933095031511802 T^{3} + 50238501223226001580 T^{4} + 933095031511802 p^{5} T^{5} + 14250815833 p^{10} T^{6} + 138830 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 59470 T + 2671253396 T^{2} + 110704118014410 T^{3} - 5424305011173132394 T^{4} + 110704118014410 p^{5} T^{5} + 2671253396 p^{10} T^{6} - 59470 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 191600 T + 26105339628 T^{2} + 2374053004024560 T^{3} + \)\(17\!\cdots\!58\)\( T^{4} + 2374053004024560 p^{5} T^{5} + 26105339628 p^{10} T^{6} + 191600 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 158920 T + 19242878460 T^{2} + 1772160038528184 T^{3} + \)\(15\!\cdots\!58\)\( T^{4} + 1772160038528184 p^{5} T^{5} + 19242878460 p^{10} T^{6} + 158920 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 47460 T + 30660377492 T^{2} + 1213862934386844 T^{3} + \)\(37\!\cdots\!30\)\( T^{4} + 1213862934386844 p^{5} T^{5} + 30660377492 p^{10} T^{6} + 47460 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.90469963380845185744929662125, −6.73655453604572571852581987658, −6.57853585080754224334604869196, −6.07607774038294143172760149429, −5.96700091963856050016608607066, −5.54314279787561233059408617971, −5.21774333059564280829029020809, −5.00369585269591043171477730822, −4.99369125129293065654370007501, −4.51844401243956478034409314959, −4.44902178681620811872317105957, −4.27880778806936406504839403627, −3.84382623614995440227751968004, −3.73958523140937303457389658007, −3.54724362005096921113186812931, −3.27536878444024553938185776667, −3.00145777916894975989453214451, −2.52257604945653301922592626349, −2.51327375339796087185632981849, −2.35360073910634656365312358778, −2.06731655320669800613842470062, −1.80080843472178054560564813602, −1.49660034736858602648140128618, −1.07741445426476957570259051858, −0.73240527763168022963818017047, 0, 0, 0, 0, 0.73240527763168022963818017047, 1.07741445426476957570259051858, 1.49660034736858602648140128618, 1.80080843472178054560564813602, 2.06731655320669800613842470062, 2.35360073910634656365312358778, 2.51327375339796087185632981849, 2.52257604945653301922592626349, 3.00145777916894975989453214451, 3.27536878444024553938185776667, 3.54724362005096921113186812931, 3.73958523140937303457389658007, 3.84382623614995440227751968004, 4.27880778806936406504839403627, 4.44902178681620811872317105957, 4.51844401243956478034409314959, 4.99369125129293065654370007501, 5.00369585269591043171477730822, 5.21774333059564280829029020809, 5.54314279787561233059408617971, 5.96700091963856050016608607066, 6.07607774038294143172760149429, 6.57853585080754224334604869196, 6.73655453604572571852581987658, 6.90469963380845185744929662125

Graph of the $Z$-function along the critical line