Properties

Label 8-1083e4-1.1-c5e4-0-0
Degree 88
Conductor 1.376×10121.376\times 10^{12}
Sign 11
Analytic cond. 9.10240×1089.10240\times 10^{8}
Root an. cond. 13.179313.1793
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 44

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 36·3-s − 37·4-s − 8·5-s − 36·6-s − 142·7-s + 97·8-s + 810·9-s + 8·10-s − 714·11-s − 1.33e3·12-s + 74·13-s + 142·14-s − 288·15-s − 509·16-s − 3.69e3·17-s − 810·18-s + 296·20-s − 5.11e3·21-s + 714·22-s + 862·23-s + 3.49e3·24-s − 4.57e3·25-s − 74·26-s + 1.45e4·27-s + 5.25e3·28-s − 992·29-s + ⋯
L(s)  = 1  − 0.176·2-s + 2.30·3-s − 1.15·4-s − 0.143·5-s − 0.408·6-s − 1.09·7-s + 0.535·8-s + 10/3·9-s + 0.0252·10-s − 1.77·11-s − 2.67·12-s + 0.121·13-s + 0.193·14-s − 0.330·15-s − 0.497·16-s − 3.09·17-s − 0.589·18-s + 0.165·20-s − 2.52·21-s + 0.314·22-s + 0.339·23-s + 1.23·24-s − 1.46·25-s − 0.0214·26-s + 3.84·27-s + 1.26·28-s − 0.219·29-s + ⋯

Functional equation

Λ(s)=((34198)s/2ΓC(s)4L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}
Λ(s)=((34198)s/2ΓC(s+5/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 341983^{4} \cdot 19^{8}
Sign: 11
Analytic conductor: 9.10240×1089.10240\times 10^{8}
Root analytic conductor: 13.179313.1793
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 44
Selberg data: (8, 34198, ( :5/2,5/2,5/2,5/2), 1)(8,\ 3^{4} \cdot 19^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )

Particular Values

L(3)L(3) == 00
L(12)L(\frac12) == 00
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3C1C_1 (1p2T)4 ( 1 - p^{2} T )^{4}
19 1 1
good2C2S4C_2 \wr S_4 1+T+19pT211pT3+449p2T411p6T5+19p11T6+p15T7+p20T8 1 + T + 19 p T^{2} - 11 p T^{3} + 449 p^{2} T^{4} - 11 p^{6} T^{5} + 19 p^{11} T^{6} + p^{15} T^{7} + p^{20} T^{8}
5C2S4C_2 \wr S_4 1+8T+4641T2+522T3+15201088T4+522p5T5+4641p10T6+8p15T7+p20T8 1 + 8 T + 4641 T^{2} + 522 T^{3} + 15201088 T^{4} + 522 p^{5} T^{5} + 4641 p^{10} T^{6} + 8 p^{15} T^{7} + p^{20} T^{8}
7C2S4C_2 \wr S_4 1+142T+35741T2+6055818T3+627818036T4+6055818p5T5+35741p10T6+142p15T7+p20T8 1 + 142 T + 35741 T^{2} + 6055818 T^{3} + 627818036 T^{4} + 6055818 p^{5} T^{5} + 35741 p^{10} T^{6} + 142 p^{15} T^{7} + p^{20} T^{8}
11C2S4C_2 \wr S_4 1+714T+448453T2+212157030T3+100726171004T4+212157030p5T5+448453p10T6+714p15T7+p20T8 1 + 714 T + 448453 T^{2} + 212157030 T^{3} + 100726171004 T^{4} + 212157030 p^{5} T^{5} + 448453 p^{10} T^{6} + 714 p^{15} T^{7} + p^{20} T^{8}
13C2S4C_2 \wr S_4 174T+390128T2+2718186pT3+172797581198T4+2718186p6T5+390128p10T674p15T7+p20T8 1 - 74 T + 390128 T^{2} + 2718186 p T^{3} + 172797581198 T^{4} + 2718186 p^{6} T^{5} + 390128 p^{10} T^{6} - 74 p^{15} T^{7} + p^{20} T^{8}
17C2S4C_2 \wr S_4 1+3690T+10315729T2+17980630638T3+25584452309804T4+17980630638p5T5+10315729p10T6+3690p15T7+p20T8 1 + 3690 T + 10315729 T^{2} + 17980630638 T^{3} + 25584452309804 T^{4} + 17980630638 p^{5} T^{5} + 10315729 p^{10} T^{6} + 3690 p^{15} T^{7} + p^{20} T^{8}
23C2S4C_2 \wr S_4 1862T+13814372T219547784758T3+113350258181846T419547784758p5T5+13814372p10T6862p15T7+p20T8 1 - 862 T + 13814372 T^{2} - 19547784758 T^{3} + 113350258181846 T^{4} - 19547784758 p^{5} T^{5} + 13814372 p^{10} T^{6} - 862 p^{15} T^{7} + p^{20} T^{8}
29C2S4C_2 \wr S_4 1+992T+35667164T2+1709314400pT3+734484878068310T4+1709314400p6T5+35667164p10T6+992p15T7+p20T8 1 + 992 T + 35667164 T^{2} + 1709314400 p T^{3} + 734484878068310 T^{4} + 1709314400 p^{6} T^{5} + 35667164 p^{10} T^{6} + 992 p^{15} T^{7} + p^{20} T^{8}
31C2S4C_2 \wr S_4 17382T+68912048T2398657804358T3+2433438794556542T4398657804358p5T5+68912048p10T67382p15T7+p20T8 1 - 7382 T + 68912048 T^{2} - 398657804358 T^{3} + 2433438794556542 T^{4} - 398657804358 p^{5} T^{5} + 68912048 p^{10} T^{6} - 7382 p^{15} T^{7} + p^{20} T^{8}
37C2S4C_2 \wr S_4 1+19114T+9619124pT2+3763460276310T3+38837605627427894T4+3763460276310p5T5+9619124p11T6+19114p15T7+p20T8 1 + 19114 T + 9619124 p T^{2} + 3763460276310 T^{3} + 38837605627427894 T^{4} + 3763460276310 p^{5} T^{5} + 9619124 p^{11} T^{6} + 19114 p^{15} T^{7} + p^{20} T^{8}
41C2S4C_2 \wr S_4 15792T+184730688T21152962318688T3+35974773285629662T41152962318688p5T5+184730688p10T65792p15T7+p20T8 1 - 5792 T + 184730688 T^{2} - 1152962318688 T^{3} + 35974773285629662 T^{4} - 1152962318688 p^{5} T^{5} + 184730688 p^{10} T^{6} - 5792 p^{15} T^{7} + p^{20} T^{8}
43C2S4C_2 \wr S_4 1+18634T+623524237T2+7714523409682T3+140468611843393948T4+7714523409682p5T5+623524237p10T6+18634p15T7+p20T8 1 + 18634 T + 623524237 T^{2} + 7714523409682 T^{3} + 140468611843393948 T^{4} + 7714523409682 p^{5} T^{5} + 623524237 p^{10} T^{6} + 18634 p^{15} T^{7} + p^{20} T^{8}
47C2S4C_2 \wr S_4 1+35424T+1120098161T2+21848880105198T3+400407438721749108T4+21848880105198p5T5+1120098161p10T6+35424p15T7+p20T8 1 + 35424 T + 1120098161 T^{2} + 21848880105198 T^{3} + 400407438721749108 T^{4} + 21848880105198 p^{5} T^{5} + 1120098161 p^{10} T^{6} + 35424 p^{15} T^{7} + p^{20} T^{8}
53C2S4C_2 \wr S_4 120256T+1403246860T219678903472736T3+818825687021028566T419678903472736p5T5+1403246860p10T620256p15T7+p20T8 1 - 20256 T + 1403246860 T^{2} - 19678903472736 T^{3} + 818825687021028566 T^{4} - 19678903472736 p^{5} T^{5} + 1403246860 p^{10} T^{6} - 20256 p^{15} T^{7} + p^{20} T^{8}
59C2S4C_2 \wr S_4 176944T+4275207964T2165416309409936T3+5007067871234044790T4165416309409936p5T5+4275207964p10T676944p15T7+p20T8 1 - 76944 T + 4275207964 T^{2} - 165416309409936 T^{3} + 5007067871234044790 T^{4} - 165416309409936 p^{5} T^{5} + 4275207964 p^{10} T^{6} - 76944 p^{15} T^{7} + p^{20} T^{8}
61C2S4C_2 \wr S_4 111562T+2658185633T222203715050858T3+3131191588175453292T422203715050858p5T5+2658185633p10T611562p15T7+p20T8 1 - 11562 T + 2658185633 T^{2} - 22203715050858 T^{3} + 3131191588175453292 T^{4} - 22203715050858 p^{5} T^{5} + 2658185633 p^{10} T^{6} - 11562 p^{15} T^{7} + p^{20} T^{8}
67C2S4C_2 \wr S_4 1110044T+8559033868T2454486933448572T3+19453088667414801526T4454486933448572p5T5+8559033868p10T6110044p15T7+p20T8 1 - 110044 T + 8559033868 T^{2} - 454486933448572 T^{3} + 19453088667414801526 T^{4} - 454486933448572 p^{5} T^{5} + 8559033868 p^{10} T^{6} - 110044 p^{15} T^{7} + p^{20} T^{8}
71C2S4C_2 \wr S_4 171184T+2740541228T250169050116560T3+1927900005464350854T450169050116560p5T5+2740541228p10T671184p15T7+p20T8 1 - 71184 T + 2740541228 T^{2} - 50169050116560 T^{3} + 1927900005464350854 T^{4} - 50169050116560 p^{5} T^{5} + 2740541228 p^{10} T^{6} - 71184 p^{15} T^{7} + p^{20} T^{8}
73C2S4C_2 \wr S_4 1+138830T+14250815833T2+933095031511802T3+50238501223226001580T4+933095031511802p5T5+14250815833p10T6+138830p15T7+p20T8 1 + 138830 T + 14250815833 T^{2} + 933095031511802 T^{3} + 50238501223226001580 T^{4} + 933095031511802 p^{5} T^{5} + 14250815833 p^{10} T^{6} + 138830 p^{15} T^{7} + p^{20} T^{8}
79C2S4C_2 \wr S_4 159470T+2671253396T2+110704118014410T35424305011173132394T4+110704118014410p5T5+2671253396p10T659470p15T7+p20T8 1 - 59470 T + 2671253396 T^{2} + 110704118014410 T^{3} - 5424305011173132394 T^{4} + 110704118014410 p^{5} T^{5} + 2671253396 p^{10} T^{6} - 59470 p^{15} T^{7} + p^{20} T^{8}
83C2S4C_2 \wr S_4 1+191600T+26105339628T2+2374053004024560T3+ 1 + 191600 T + 26105339628 T^{2} + 2374053004024560 T^{3} + 17 ⁣ ⁣5817\!\cdots\!58T4+2374053004024560p5T5+26105339628p10T6+191600p15T7+p20T8 T^{4} + 2374053004024560 p^{5} T^{5} + 26105339628 p^{10} T^{6} + 191600 p^{15} T^{7} + p^{20} T^{8}
89C2S4C_2 \wr S_4 1+158920T+19242878460T2+1772160038528184T3+ 1 + 158920 T + 19242878460 T^{2} + 1772160038528184 T^{3} + 15 ⁣ ⁣5815\!\cdots\!58T4+1772160038528184p5T5+19242878460p10T6+158920p15T7+p20T8 T^{4} + 1772160038528184 p^{5} T^{5} + 19242878460 p^{10} T^{6} + 158920 p^{15} T^{7} + p^{20} T^{8}
97C2S4C_2 \wr S_4 1+47460T+30660377492T2+1213862934386844T3+ 1 + 47460 T + 30660377492 T^{2} + 1213862934386844 T^{3} + 37 ⁣ ⁣3037\!\cdots\!30T4+1213862934386844p5T5+30660377492p10T6+47460p15T7+p20T8 T^{4} + 1213862934386844 p^{5} T^{5} + 30660377492 p^{10} T^{6} + 47460 p^{15} T^{7} + p^{20} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.90469963380845185744929662125, −6.73655453604572571852581987658, −6.57853585080754224334604869196, −6.07607774038294143172760149429, −5.96700091963856050016608607066, −5.54314279787561233059408617971, −5.21774333059564280829029020809, −5.00369585269591043171477730822, −4.99369125129293065654370007501, −4.51844401243956478034409314959, −4.44902178681620811872317105957, −4.27880778806936406504839403627, −3.84382623614995440227751968004, −3.73958523140937303457389658007, −3.54724362005096921113186812931, −3.27536878444024553938185776667, −3.00145777916894975989453214451, −2.52257604945653301922592626349, −2.51327375339796087185632981849, −2.35360073910634656365312358778, −2.06731655320669800613842470062, −1.80080843472178054560564813602, −1.49660034736858602648140128618, −1.07741445426476957570259051858, −0.73240527763168022963818017047, 0, 0, 0, 0, 0.73240527763168022963818017047, 1.07741445426476957570259051858, 1.49660034736858602648140128618, 1.80080843472178054560564813602, 2.06731655320669800613842470062, 2.35360073910634656365312358778, 2.51327375339796087185632981849, 2.52257604945653301922592626349, 3.00145777916894975989453214451, 3.27536878444024553938185776667, 3.54724362005096921113186812931, 3.73958523140937303457389658007, 3.84382623614995440227751968004, 4.27880778806936406504839403627, 4.44902178681620811872317105957, 4.51844401243956478034409314959, 4.99369125129293065654370007501, 5.00369585269591043171477730822, 5.21774333059564280829029020809, 5.54314279787561233059408617971, 5.96700091963856050016608607066, 6.07607774038294143172760149429, 6.57853585080754224334604869196, 6.73655453604572571852581987658, 6.90469963380845185744929662125

Graph of the ZZ-function along the critical line