Properties

Label 2-1083-1.1-c5-0-280
Degree $2$
Conductor $1083$
Sign $-1$
Analytic cond. $173.695$
Root an. cond. $13.1793$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.73·2-s + 9·3-s + 44.2·4-s − 34.5·5-s + 78.5·6-s + 140.·7-s + 107.·8-s + 81·9-s − 302.·10-s + 57.6·11-s + 398.·12-s − 352.·13-s + 1.22e3·14-s − 311.·15-s − 481.·16-s − 1.58e3·17-s + 707.·18-s − 1.53e3·20-s + 1.26e3·21-s + 503.·22-s − 2.25e3·23-s + 963.·24-s − 1.92e3·25-s − 3.07e3·26-s + 729·27-s + 6.22e3·28-s − 1.71e3·29-s + ⋯
L(s)  = 1  + 1.54·2-s + 0.577·3-s + 1.38·4-s − 0.618·5-s + 0.891·6-s + 1.08·7-s + 0.591·8-s + 0.333·9-s − 0.955·10-s + 0.143·11-s + 0.798·12-s − 0.578·13-s + 1.67·14-s − 0.357·15-s − 0.469·16-s − 1.32·17-s + 0.514·18-s − 0.855·20-s + 0.626·21-s + 0.221·22-s − 0.889·23-s + 0.341·24-s − 0.617·25-s − 0.892·26-s + 0.192·27-s + 1.50·28-s − 0.378·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1083\)    =    \(3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(173.695\)
Root analytic conductor: \(13.1793\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1083,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
19 \( 1 \)
good2 \( 1 - 8.73T + 32T^{2} \)
5 \( 1 + 34.5T + 3.12e3T^{2} \)
7 \( 1 - 140.T + 1.68e4T^{2} \)
11 \( 1 - 57.6T + 1.61e5T^{2} \)
13 \( 1 + 352.T + 3.71e5T^{2} \)
17 \( 1 + 1.58e3T + 1.41e6T^{2} \)
23 \( 1 + 2.25e3T + 6.43e6T^{2} \)
29 \( 1 + 1.71e3T + 2.05e7T^{2} \)
31 \( 1 + 6.04e3T + 2.86e7T^{2} \)
37 \( 1 - 3.24e3T + 6.93e7T^{2} \)
41 \( 1 - 1.28e4T + 1.15e8T^{2} \)
43 \( 1 + 1.14e4T + 1.47e8T^{2} \)
47 \( 1 + 2.87e3T + 2.29e8T^{2} \)
53 \( 1 - 1.61e4T + 4.18e8T^{2} \)
59 \( 1 - 1.15e4T + 7.14e8T^{2} \)
61 \( 1 + 6.21e3T + 8.44e8T^{2} \)
67 \( 1 - 4.72e4T + 1.35e9T^{2} \)
71 \( 1 + 6.88e4T + 1.80e9T^{2} \)
73 \( 1 + 5.42e4T + 2.07e9T^{2} \)
79 \( 1 - 8.81e4T + 3.07e9T^{2} \)
83 \( 1 + 1.74e4T + 3.93e9T^{2} \)
89 \( 1 + 9.71e4T + 5.58e9T^{2} \)
97 \( 1 + 5.23e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.575880306539819705298726730554, −7.72650039132923847655207265198, −7.02623648506932790127905212577, −5.96700091963856050016608607066, −5.00369585269591043171477730822, −4.27880778806936406504839403627, −3.73958523140937303457389658007, −2.51327375339796087185632981849, −1.80080843472178054560564813602, 0, 1.80080843472178054560564813602, 2.51327375339796087185632981849, 3.73958523140937303457389658007, 4.27880778806936406504839403627, 5.00369585269591043171477730822, 5.96700091963856050016608607066, 7.02623648506932790127905212577, 7.72650039132923847655207265198, 8.575880306539819705298726730554

Graph of the $Z$-function along the critical line