L(s) = 1 | + (0.773 − 1.34i)2-s + (−1.14 − 1.97i)3-s + (−0.197 − 0.342i)4-s + (0.5 − 0.866i)5-s − 3.52·6-s + (−2.50 − 0.851i)7-s + 2.48·8-s + (−1.09 + 1.90i)9-s + (−0.773 − 1.34i)10-s + (−2.75 − 4.76i)11-s + (−0.451 + 0.781i)12-s + 3.50·13-s + (−3.08 + 2.69i)14-s − 2.28·15-s + (2.31 − 4.01i)16-s + (−1.13 − 1.95i)17-s + ⋯ |
L(s) = 1 | + (0.547 − 0.947i)2-s + (−0.658 − 1.14i)3-s + (−0.0989 − 0.171i)4-s + (0.223 − 0.387i)5-s − 1.44·6-s + (−0.946 − 0.321i)7-s + 0.877·8-s + (−0.366 + 0.634i)9-s + (−0.244 − 0.423i)10-s + (−0.830 − 1.43i)11-s + (−0.130 + 0.225i)12-s + 0.970·13-s + (−0.823 + 0.721i)14-s − 0.588·15-s + (0.579 − 1.00i)16-s + (−0.274 − 0.475i)17-s + ⋯ |
Λ(s)=(=(1085s/2ΓC(s)L(s)(−0.705−0.708i)Λ(2−s)
Λ(s)=(=(1085s/2ΓC(s+1/2)L(s)(−0.705−0.708i)Λ(1−s)
Degree: |
2 |
Conductor: |
1085
= 5⋅7⋅31
|
Sign: |
−0.705−0.708i
|
Analytic conductor: |
8.66376 |
Root analytic conductor: |
2.94342 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1085(156,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1085, ( :1/2), −0.705−0.708i)
|
Particular Values
L(1) |
≈ |
1.361082571 |
L(21) |
≈ |
1.361082571 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.5+0.866i)T |
| 7 | 1+(2.50+0.851i)T |
| 31 | 1+(0.5+0.866i)T |
good | 2 | 1+(−0.773+1.34i)T+(−1−1.73i)T2 |
| 3 | 1+(1.14+1.97i)T+(−1.5+2.59i)T2 |
| 11 | 1+(2.75+4.76i)T+(−5.5+9.52i)T2 |
| 13 | 1−3.50T+13T2 |
| 17 | 1+(1.13+1.95i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.329+0.570i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.74−4.75i)T+(−11.5−19.9i)T2 |
| 29 | 1−1.83T+29T2 |
| 37 | 1+(4.69−8.13i)T+(−18.5−32.0i)T2 |
| 41 | 1−6.10T+41T2 |
| 43 | 1+7.49T+43T2 |
| 47 | 1+(1.60−2.78i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.0757+0.131i)T+(−26.5+45.8i)T2 |
| 59 | 1+(5.64+9.78i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−7.23+12.5i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.23−10.8i)T+(−33.5+58.0i)T2 |
| 71 | 1+6.50T+71T2 |
| 73 | 1+(6.77+11.7i)T+(−36.5+63.2i)T2 |
| 79 | 1+(3.48−6.04i)T+(−39.5−68.4i)T2 |
| 83 | 1−16.8T+83T2 |
| 89 | 1+(−4.74+8.21i)T+(−44.5−77.0i)T2 |
| 97 | 1−6.36T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.593522471511019438270995212126, −8.393690335938217211405781588756, −7.64955378724450786321928597101, −6.63367498126924856782736455645, −5.97745033108578794843163881587, −5.07740472610326529959720961301, −3.68378856843137760764134956801, −2.97196140229120209993465748372, −1.63058723794915413283151212389, −0.53979036689454361610134991040,
2.19626658921603389802311233423, 3.74475993389294989353189532703, 4.50707094721039326057332674930, 5.38319415458406046769468087880, 6.03604294272789617597868993257, 6.73372401665974894084009919174, 7.61055213168473431681305576979, 8.798962050581249029942285118068, 9.830924378993140321154486140455, 10.43560727122880083392871701392