L(s) = 1 | + (−1.05 + 0.946i)2-s + (−0.913 − 0.406i)3-s + (0.104 − 0.994i)4-s + (−0.669 + 0.743i)5-s + (1.34 − 0.437i)6-s + (−0.575 − 1.29i)7-s + (0.669 + 0.743i)9-s − 1.41i·10-s + (−0.500 + 0.866i)12-s + (1.82 + 0.813i)14-s + (0.913 − 0.406i)15-s + (0.978 + 0.207i)16-s + (−1.40 − 0.147i)18-s + (0.669 + 0.743i)20-s + 1.41i·21-s + ⋯ |
L(s) = 1 | + (−1.05 + 0.946i)2-s + (−0.913 − 0.406i)3-s + (0.104 − 0.994i)4-s + (−0.669 + 0.743i)5-s + (1.34 − 0.437i)6-s + (−0.575 − 1.29i)7-s + (0.669 + 0.743i)9-s − 1.41i·10-s + (−0.500 + 0.866i)12-s + (1.82 + 0.813i)14-s + (0.913 − 0.406i)15-s + (0.978 + 0.207i)16-s + (−1.40 − 0.147i)18-s + (0.669 + 0.743i)20-s + 1.41i·21-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.460−0.887i)Λ(1−s)
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.460−0.887i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
−0.460−0.887i
|
Analytic conductor: |
0.543481 |
Root analytic conductor: |
0.737212 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(475,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :0), −0.460−0.887i)
|
Particular Values
L(21) |
≈ |
0.2636614731 |
L(21) |
≈ |
0.2636614731 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.913+0.406i)T |
| 11 | 1 |
good | 2 | 1+(1.05−0.946i)T+(0.104−0.994i)T2 |
| 5 | 1+(0.669−0.743i)T+(−0.104−0.994i)T2 |
| 7 | 1+(0.575+1.29i)T+(−0.669+0.743i)T2 |
| 13 | 1+(−0.913+0.406i)T2 |
| 17 | 1+(0.809−0.587i)T2 |
| 19 | 1+(−0.309+0.951i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1+(−0.575−1.29i)T+(−0.669+0.743i)T2 |
| 31 | 1+(0.978−0.207i)T+(0.913−0.406i)T2 |
| 37 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 41 | 1+(−0.669−0.743i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(−0.104−0.994i)T+(−0.978+0.207i)T2 |
| 53 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 59 | 1+(0.104−0.994i)T+(−0.978−0.207i)T2 |
| 61 | 1+(0.294−1.38i)T+(−0.913−0.406i)T2 |
| 67 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 73 | 1+(0.831−1.14i)T+(−0.309−0.951i)T2 |
| 79 | 1+(0.104−0.994i)T2 |
| 83 | 1+(0.294−1.38i)T+(−0.913−0.406i)T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.669−0.743i)T+(−0.104+0.994i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37633005919439845076043536806, −9.564108643939341932419410131596, −8.432555368519922454831476258533, −7.46841669026750260888104470187, −7.14659949396433971246261042802, −6.59863011744108901469845321904, −5.65641789297218858539804508866, −4.30854802329474250784738729025, −3.25997606377375848841490132699, −1.07513108890654075612351258585,
0.47408370384288265223877146384, 2.09084264478343865385506983788, 3.35859812315356422885650446206, 4.51327595723152721171593496064, 5.55057729335510585057097802644, 6.24400564130135902279841143065, 7.63777735757051500568616941818, 8.548253263465825223866503946233, 9.198835227389620170663571675632, 9.735819451222735331028672342442