L(s) = 1 | + (−1.05 + 0.946i)2-s + (−0.913 − 0.406i)3-s + (0.104 − 0.994i)4-s + (−0.669 + 0.743i)5-s + (1.34 − 0.437i)6-s + (−0.575 − 1.29i)7-s + (0.669 + 0.743i)9-s − 1.41i·10-s + (−0.500 + 0.866i)12-s + (1.82 + 0.813i)14-s + (0.913 − 0.406i)15-s + (0.978 + 0.207i)16-s + (−1.40 − 0.147i)18-s + (0.669 + 0.743i)20-s + 1.41i·21-s + ⋯ |
L(s) = 1 | + (−1.05 + 0.946i)2-s + (−0.913 − 0.406i)3-s + (0.104 − 0.994i)4-s + (−0.669 + 0.743i)5-s + (1.34 − 0.437i)6-s + (−0.575 − 1.29i)7-s + (0.669 + 0.743i)9-s − 1.41i·10-s + (−0.500 + 0.866i)12-s + (1.82 + 0.813i)14-s + (0.913 − 0.406i)15-s + (0.978 + 0.207i)16-s + (−1.40 − 0.147i)18-s + (0.669 + 0.743i)20-s + 1.41i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.460 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.460 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2636614731\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2636614731\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.913 + 0.406i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (1.05 - 0.946i)T + (0.104 - 0.994i)T^{2} \) |
| 5 | \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \) |
| 7 | \( 1 + (0.575 + 1.29i)T + (-0.669 + 0.743i)T^{2} \) |
| 13 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.575 - 1.29i)T + (-0.669 + 0.743i)T^{2} \) |
| 31 | \( 1 + (0.978 - 0.207i)T + (0.913 - 0.406i)T^{2} \) |
| 37 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.104 - 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.104 - 0.994i)T + (-0.978 - 0.207i)T^{2} \) |
| 61 | \( 1 + (0.294 - 1.38i)T + (-0.913 - 0.406i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.831 - 1.14i)T + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 83 | \( 1 + (0.294 - 1.38i)T + (-0.913 - 0.406i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.669 - 0.743i)T + (-0.104 + 0.994i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37633005919439845076043536806, −9.564108643939341932419410131596, −8.432555368519922454831476258533, −7.46841669026750260888104470187, −7.14659949396433971246261042802, −6.59863011744108901469845321904, −5.65641789297218858539804508866, −4.30854802329474250784738729025, −3.25997606377375848841490132699, −1.07513108890654075612351258585,
0.47408370384288265223877146384, 2.09084264478343865385506983788, 3.35859812315356422885650446206, 4.51327595723152721171593496064, 5.55057729335510585057097802644, 6.24400564130135902279841143065, 7.63777735757051500568616941818, 8.548253263465825223866503946233, 9.198835227389620170663571675632, 9.735819451222735331028672342442