L(s) = 1 | + 3.07i·2-s − 5.47·4-s − 4·5-s + 0.898i·7-s − 4.53i·8-s − 12.3i·10-s − 8.50i·13-s − 2.76·14-s − 7.94·16-s − 24.7i·17-s + 11.8i·19-s + 21.8·20-s + 7.23·23-s − 9·25-s + 26.1·26-s + ⋯ |
L(s) = 1 | + 1.53i·2-s − 1.36·4-s − 0.800·5-s + 0.128i·7-s − 0.566i·8-s − 1.23i·10-s − 0.654i·13-s − 0.197·14-s − 0.496·16-s − 1.45i·17-s + 0.624i·19-s + 1.09·20-s + 0.314·23-s − 0.359·25-s + 1.00·26-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(0.372−0.927i)Λ(3−s)
Λ(s)=(=(1089s/2ΓC(s+1)L(s)(0.372−0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
0.372−0.927i
|
Analytic conductor: |
29.6731 |
Root analytic conductor: |
5.44730 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(604,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :1), 0.372−0.927i)
|
Particular Values
L(23) |
≈ |
1.243465345 |
L(21) |
≈ |
1.243465345 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1−3.07iT−4T2 |
| 5 | 1+4T+25T2 |
| 7 | 1−0.898iT−49T2 |
| 13 | 1+8.50iT−169T2 |
| 17 | 1+24.7iT−289T2 |
| 19 | 1−11.8iT−361T2 |
| 23 | 1−7.23T+529T2 |
| 29 | 1+3.46iT−841T2 |
| 31 | 1−33.1T+961T2 |
| 37 | 1−40.2T+1.36e3T2 |
| 41 | 1+1.30iT−1.68e3T2 |
| 43 | 1+33.0iT−1.84e3T2 |
| 47 | 1+22.7T+2.20e3T2 |
| 53 | 1−78.5T+2.80e3T2 |
| 59 | 1+31.2T+3.48e3T2 |
| 61 | 1−28.0iT−3.72e3T2 |
| 67 | 1+76.5T+4.48e3T2 |
| 71 | 1−62.3T+5.04e3T2 |
| 73 | 1+94.1iT−5.32e3T2 |
| 79 | 1−65.9iT−6.24e3T2 |
| 83 | 1−56.7iT−6.88e3T2 |
| 89 | 1−62.2T+7.92e3T2 |
| 97 | 1−72.4T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.501596950450486762150612086219, −8.703751413638769215744651275086, −7.86461139792563280408664680456, −7.47225918144445960541982289732, −6.56901894183215736128440586844, −5.67311910389124046665553135231, −4.90423325069693016767500345821, −3.96483852507239753342913204407, −2.66452834322818774315286715840, −0.53237918866483149563176950493,
0.863041628387778892829239717971, 2.04959420830303774468371384474, 3.14531416173286865224890021001, 4.06411913434107265078866979670, 4.59741990788380711584796739462, 6.09103962341931874258136036438, 7.10303084447568804025431362874, 8.140039777066700742460387297728, 8.893361858892043576505057759912, 9.759960624330986994180541216267