L(s) = 1 | + 3.07i·2-s − 5.47·4-s − 4·5-s + 0.898i·7-s − 4.53i·8-s − 12.3i·10-s − 8.50i·13-s − 2.76·14-s − 7.94·16-s − 24.7i·17-s + 11.8i·19-s + 21.8·20-s + 7.23·23-s − 9·25-s + 26.1·26-s + ⋯ |
L(s) = 1 | + 1.53i·2-s − 1.36·4-s − 0.800·5-s + 0.128i·7-s − 0.566i·8-s − 1.23i·10-s − 0.654i·13-s − 0.197·14-s − 0.496·16-s − 1.45i·17-s + 0.624i·19-s + 1.09·20-s + 0.314·23-s − 0.359·25-s + 1.00·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.372 - 0.927i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.372 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.243465345\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.243465345\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 - 3.07iT - 4T^{2} \) |
| 5 | \( 1 + 4T + 25T^{2} \) |
| 7 | \( 1 - 0.898iT - 49T^{2} \) |
| 13 | \( 1 + 8.50iT - 169T^{2} \) |
| 17 | \( 1 + 24.7iT - 289T^{2} \) |
| 19 | \( 1 - 11.8iT - 361T^{2} \) |
| 23 | \( 1 - 7.23T + 529T^{2} \) |
| 29 | \( 1 + 3.46iT - 841T^{2} \) |
| 31 | \( 1 - 33.1T + 961T^{2} \) |
| 37 | \( 1 - 40.2T + 1.36e3T^{2} \) |
| 41 | \( 1 + 1.30iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 33.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 22.7T + 2.20e3T^{2} \) |
| 53 | \( 1 - 78.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + 31.2T + 3.48e3T^{2} \) |
| 61 | \( 1 - 28.0iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 76.5T + 4.48e3T^{2} \) |
| 71 | \( 1 - 62.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + 94.1iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 65.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 56.7iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 62.2T + 7.92e3T^{2} \) |
| 97 | \( 1 - 72.4T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.501596950450486762150612086219, −8.703751413638769215744651275086, −7.86461139792563280408664680456, −7.47225918144445960541982289732, −6.56901894183215736128440586844, −5.67311910389124046665553135231, −4.90423325069693016767500345821, −3.96483852507239753342913204407, −2.66452834322818774315286715840, −0.53237918866483149563176950493,
0.863041628387778892829239717971, 2.04959420830303774468371384474, 3.14531416173286865224890021001, 4.06411913434107265078866979670, 4.59741990788380711584796739462, 6.09103962341931874258136036438, 7.10303084447568804025431362874, 8.140039777066700742460387297728, 8.893361858892043576505057759912, 9.759960624330986994180541216267