Properties

Label 2-1098-1.1-c1-0-5
Degree $2$
Conductor $1098$
Sign $1$
Analytic cond. $8.76757$
Root an. cond. $2.96100$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·5-s − 8-s − 3·10-s + 2·11-s − 2·13-s + 16-s + 17-s + 2·19-s + 3·20-s − 2·22-s + 9·23-s + 4·25-s + 2·26-s + 4·29-s − 6·31-s − 32-s − 34-s − 5·37-s − 2·38-s − 3·40-s + 5·43-s + 2·44-s − 9·46-s + 2·47-s − 7·49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.353·8-s − 0.948·10-s + 0.603·11-s − 0.554·13-s + 1/4·16-s + 0.242·17-s + 0.458·19-s + 0.670·20-s − 0.426·22-s + 1.87·23-s + 4/5·25-s + 0.392·26-s + 0.742·29-s − 1.07·31-s − 0.176·32-s − 0.171·34-s − 0.821·37-s − 0.324·38-s − 0.474·40-s + 0.762·43-s + 0.301·44-s − 1.32·46-s + 0.291·47-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1098\)    =    \(2 \cdot 3^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(8.76757\)
Root analytic conductor: \(2.96100\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1098,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.577115504\)
\(L(\frac12)\) \(\approx\) \(1.577115504\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
61 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 11 T + p T^{2} \)
97 \( 1 - 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.542279411507614374384982070481, −9.362442253243670508951667136242, −8.411971412452896244672142790463, −7.25881902070036970326960022120, −6.65307190336527170048084506545, −5.68629506076367166520916726918, −4.91325264071753767766528719125, −3.31907711339124406598263296359, −2.23853402450067221315742836156, −1.15628973667305275952816214845, 1.15628973667305275952816214845, 2.23853402450067221315742836156, 3.31907711339124406598263296359, 4.91325264071753767766528719125, 5.68629506076367166520916726918, 6.65307190336527170048084506545, 7.25881902070036970326960022120, 8.411971412452896244672142790463, 9.362442253243670508951667136242, 9.542279411507614374384982070481

Graph of the $Z$-function along the critical line