L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.887 − 1.48i)3-s + (−0.499 − 0.866i)4-s + (−2.04 − 3.55i)5-s + (1.73 − 0.0253i)6-s + (−1.01 + 1.76i)7-s + 0.999·8-s + (−1.42 + 2.64i)9-s + 4.09·10-s + (−0.373 + 0.646i)11-s + (−0.843 + 1.51i)12-s + (−1.26 − 2.19i)13-s + (−1.01 − 1.76i)14-s + (−3.45 + 6.20i)15-s + (−0.5 + 0.866i)16-s − 6.94·17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.512 − 0.858i)3-s + (−0.249 − 0.433i)4-s + (−0.916 − 1.58i)5-s + (0.707 − 0.0103i)6-s + (−0.384 + 0.666i)7-s + 0.353·8-s + (−0.474 + 0.880i)9-s + 1.29·10-s + (−0.112 + 0.194i)11-s + (−0.243 + 0.436i)12-s + (−0.351 − 0.609i)13-s + (−0.272 − 0.471i)14-s + (−0.893 + 1.60i)15-s + (−0.125 + 0.216i)16-s − 1.68·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.144 - 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.144 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2132078406\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2132078406\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.887 + 1.48i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (2.04 + 3.55i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.01 - 1.76i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.373 - 0.646i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.26 + 2.19i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 6.94T + 17T^{2} \) |
| 19 | \( 1 - 4.45T + 19T^{2} \) |
| 23 | \( 1 + (2.94 + 5.10i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.87 + 3.25i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.13 + 1.96i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.890T + 37T^{2} \) |
| 41 | \( 1 + (-4.15 - 7.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.79 - 6.56i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.632 - 1.09i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 1.98T + 53T^{2} \) |
| 59 | \( 1 + (-4.87 - 8.44i)T + (-29.5 + 51.0i)T^{2} \) |
| 67 | \( 1 + (-5.67 - 9.82i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.97T + 71T^{2} \) |
| 73 | \( 1 - 9.19T + 73T^{2} \) |
| 79 | \( 1 + (-3.16 + 5.47i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.05 + 13.9i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 2.90T + 89T^{2} \) |
| 97 | \( 1 + (6.30 - 10.9i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.741455557703674044662304782591, −8.961548620508075672288469939093, −8.208604946726224127667574676683, −7.77862401180558241803470225571, −6.73415903618349832685863930831, −5.85658108841534857598299595672, −5.02515065312083164348597914862, −4.33014106869550830249580196368, −2.44883805809955476028574788617, −0.929744907315696037268935977356,
0.14790336062001609750858090504, 2.46464805613640135614683297253, 3.66200261073216991152791623068, 3.86993964559070792945056842138, 5.17992597919712886098625372444, 6.66863161203667712358435152949, 6.97945006889652125687623728487, 8.040494023970602127086737057807, 9.180996449959244886758177444950, 9.889443694136875898378855464453