L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.887 − 1.48i)3-s + (−0.499 − 0.866i)4-s + (−2.04 − 3.55i)5-s + (1.73 − 0.0253i)6-s + (−1.01 + 1.76i)7-s + 0.999·8-s + (−1.42 + 2.64i)9-s + 4.09·10-s + (−0.373 + 0.646i)11-s + (−0.843 + 1.51i)12-s + (−1.26 − 2.19i)13-s + (−1.01 − 1.76i)14-s + (−3.45 + 6.20i)15-s + (−0.5 + 0.866i)16-s − 6.94·17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.512 − 0.858i)3-s + (−0.249 − 0.433i)4-s + (−0.916 − 1.58i)5-s + (0.707 − 0.0103i)6-s + (−0.384 + 0.666i)7-s + 0.353·8-s + (−0.474 + 0.880i)9-s + 1.29·10-s + (−0.112 + 0.194i)11-s + (−0.243 + 0.436i)12-s + (−0.351 − 0.609i)13-s + (−0.272 − 0.471i)14-s + (−0.893 + 1.60i)15-s + (−0.125 + 0.216i)16-s − 1.68·17-s + ⋯ |
Λ(s)=(=(1098s/2ΓC(s)L(s)(0.144−0.989i)Λ(2−s)
Λ(s)=(=(1098s/2ΓC(s+1/2)L(s)(0.144−0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
1098
= 2⋅32⋅61
|
Sign: |
0.144−0.989i
|
Analytic conductor: |
8.76757 |
Root analytic conductor: |
2.96100 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1098(367,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1098, ( :1/2), 0.144−0.989i)
|
Particular Values
L(1) |
≈ |
0.2132078406 |
L(21) |
≈ |
0.2132078406 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1+(0.887+1.48i)T |
| 61 | 1+(−0.5+0.866i)T |
good | 5 | 1+(2.04+3.55i)T+(−2.5+4.33i)T2 |
| 7 | 1+(1.01−1.76i)T+(−3.5−6.06i)T2 |
| 11 | 1+(0.373−0.646i)T+(−5.5−9.52i)T2 |
| 13 | 1+(1.26+2.19i)T+(−6.5+11.2i)T2 |
| 17 | 1+6.94T+17T2 |
| 19 | 1−4.45T+19T2 |
| 23 | 1+(2.94+5.10i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.87+3.25i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.13+1.96i)T+(−15.5+26.8i)T2 |
| 37 | 1−0.890T+37T2 |
| 41 | 1+(−4.15−7.19i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.79−6.56i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.632−1.09i)T+(−23.5−40.7i)T2 |
| 53 | 1−1.98T+53T2 |
| 59 | 1+(−4.87−8.44i)T+(−29.5+51.0i)T2 |
| 67 | 1+(−5.67−9.82i)T+(−33.5+58.0i)T2 |
| 71 | 1−6.97T+71T2 |
| 73 | 1−9.19T+73T2 |
| 79 | 1+(−3.16+5.47i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−8.05+13.9i)T+(−41.5−71.8i)T2 |
| 89 | 1+2.90T+89T2 |
| 97 | 1+(6.30−10.9i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.741455557703674044662304782591, −8.961548620508075672288469939093, −8.208604946726224127667574676683, −7.77862401180558241803470225571, −6.73415903618349832685863930831, −5.85658108841534857598299595672, −5.02515065312083164348597914862, −4.33014106869550830249580196368, −2.44883805809955476028574788617, −0.929744907315696037268935977356,
0.14790336062001609750858090504, 2.46464805613640135614683297253, 3.66200261073216991152791623068, 3.86993964559070792945056842138, 5.17992597919712886098625372444, 6.66863161203667712358435152949, 6.97945006889652125687623728487, 8.040494023970602127086737057807, 9.180996449959244886758177444950, 9.889443694136875898378855464453