L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.20 + 1.24i)3-s + (−0.499 + 0.866i)4-s + (−0.417 + 0.723i)5-s + (0.479 − 1.66i)6-s + (−0.864 − 1.49i)7-s + 0.999·8-s + (−0.110 + 2.99i)9-s + 0.835·10-s + (−0.501 − 0.869i)11-s + (−1.68 + 0.417i)12-s + (−0.749 + 1.29i)13-s + (−0.864 + 1.49i)14-s + (−1.40 + 0.348i)15-s + (−0.5 − 0.866i)16-s + 1.43·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.693 + 0.720i)3-s + (−0.249 + 0.433i)4-s + (−0.186 + 0.323i)5-s + (0.195 − 0.679i)6-s + (−0.326 − 0.565i)7-s + 0.353·8-s + (−0.0369 + 0.999i)9-s + 0.264·10-s + (−0.151 − 0.262i)11-s + (−0.485 + 0.120i)12-s + (−0.207 + 0.360i)13-s + (−0.231 + 0.400i)14-s + (−0.362 + 0.0900i)15-s + (−0.125 − 0.216i)16-s + 0.347·17-s + ⋯ |
Λ(s)=(=(1098s/2ΓC(s)L(s)(0.376−0.926i)Λ(2−s)
Λ(s)=(=(1098s/2ΓC(s+1/2)L(s)(0.376−0.926i)Λ(1−s)
Degree: |
2 |
Conductor: |
1098
= 2⋅32⋅61
|
Sign: |
0.376−0.926i
|
Analytic conductor: |
8.76757 |
Root analytic conductor: |
2.96100 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1098(733,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1098, ( :1/2), 0.376−0.926i)
|
Particular Values
L(1) |
≈ |
1.356078423 |
L(21) |
≈ |
1.356078423 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1+(−1.20−1.24i)T |
| 61 | 1+(−0.5−0.866i)T |
good | 5 | 1+(0.417−0.723i)T+(−2.5−4.33i)T2 |
| 7 | 1+(0.864+1.49i)T+(−3.5+6.06i)T2 |
| 11 | 1+(0.501+0.869i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.749−1.29i)T+(−6.5−11.2i)T2 |
| 17 | 1−1.43T+17T2 |
| 19 | 1−6.31T+19T2 |
| 23 | 1+(1.98−3.44i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.95−5.12i)T+(−14.5+25.1i)T2 |
| 31 | 1+(3.74−6.49i)T+(−15.5−26.8i)T2 |
| 37 | 1−1.46T+37T2 |
| 41 | 1+(2.17−3.77i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.10+1.91i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.60−2.77i)T+(−23.5+40.7i)T2 |
| 53 | 1+7.59T+53T2 |
| 59 | 1+(5.53−9.57i)T+(−29.5−51.0i)T2 |
| 67 | 1+(1.12−1.94i)T+(−33.5−58.0i)T2 |
| 71 | 1+12.2T+71T2 |
| 73 | 1−8.86T+73T2 |
| 79 | 1+(−3.34−5.79i)T+(−39.5+68.4i)T2 |
| 83 | 1+(6.98+12.0i)T+(−41.5+71.8i)T2 |
| 89 | 1+0.769T+89T2 |
| 97 | 1+(−2.59−4.48i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.991398954078720736921003880215, −9.339830976154369176335334235338, −8.607133344507745464552520207364, −7.58706046576660631039906449815, −7.08920131098779524183609267033, −5.50796472067872352736264223437, −4.56682908242154961096991646109, −3.38939577712861788232868683189, −3.09736719651280003751729595233, −1.49307764228737981360906848148,
0.65193673965809840942270265794, 2.17617278088637581087391258131, 3.25689546362280700260598516869, 4.56649175068457705450726547949, 5.70863999653824271601032516812, 6.42185451994948234095814348700, 7.46428697921868152879914898031, 7.951927988398656018436301316348, 8.735565766596568658892654640657, 9.524544854097308015989169241718