L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.20 + 1.24i)3-s + (−0.499 + 0.866i)4-s + (−0.417 + 0.723i)5-s + (0.479 − 1.66i)6-s + (−0.864 − 1.49i)7-s + 0.999·8-s + (−0.110 + 2.99i)9-s + 0.835·10-s + (−0.501 − 0.869i)11-s + (−1.68 + 0.417i)12-s + (−0.749 + 1.29i)13-s + (−0.864 + 1.49i)14-s + (−1.40 + 0.348i)15-s + (−0.5 − 0.866i)16-s + 1.43·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.693 + 0.720i)3-s + (−0.249 + 0.433i)4-s + (−0.186 + 0.323i)5-s + (0.195 − 0.679i)6-s + (−0.326 − 0.565i)7-s + 0.353·8-s + (−0.0369 + 0.999i)9-s + 0.264·10-s + (−0.151 − 0.262i)11-s + (−0.485 + 0.120i)12-s + (−0.207 + 0.360i)13-s + (−0.231 + 0.400i)14-s + (−0.362 + 0.0900i)15-s + (−0.125 − 0.216i)16-s + 0.347·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.376 - 0.926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.376 - 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.356078423\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.356078423\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.20 - 1.24i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.417 - 0.723i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.864 + 1.49i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.501 + 0.869i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.749 - 1.29i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.43T + 17T^{2} \) |
| 19 | \( 1 - 6.31T + 19T^{2} \) |
| 23 | \( 1 + (1.98 - 3.44i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.95 - 5.12i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.74 - 6.49i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 1.46T + 37T^{2} \) |
| 41 | \( 1 + (2.17 - 3.77i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.10 + 1.91i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.60 - 2.77i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 7.59T + 53T^{2} \) |
| 59 | \( 1 + (5.53 - 9.57i)T + (-29.5 - 51.0i)T^{2} \) |
| 67 | \( 1 + (1.12 - 1.94i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.2T + 71T^{2} \) |
| 73 | \( 1 - 8.86T + 73T^{2} \) |
| 79 | \( 1 + (-3.34 - 5.79i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.98 + 12.0i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 0.769T + 89T^{2} \) |
| 97 | \( 1 + (-2.59 - 4.48i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.991398954078720736921003880215, −9.339830976154369176335334235338, −8.607133344507745464552520207364, −7.58706046576660631039906449815, −7.08920131098779524183609267033, −5.50796472067872352736264223437, −4.56682908242154961096991646109, −3.38939577712861788232868683189, −3.09736719651280003751729595233, −1.49307764228737981360906848148,
0.65193673965809840942270265794, 2.17617278088637581087391258131, 3.25689546362280700260598516869, 4.56649175068457705450726547949, 5.70863999653824271601032516812, 6.42185451994948234095814348700, 7.46428697921868152879914898031, 7.951927988398656018436301316348, 8.735565766596568658892654640657, 9.524544854097308015989169241718