L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.53 − 0.806i)3-s + (−0.499 + 0.866i)4-s + (1.59 − 2.76i)5-s + (0.0679 + 1.73i)6-s + (−2.01 − 3.48i)7-s + 0.999·8-s + (1.69 + 2.47i)9-s − 3.19·10-s + (−2.90 − 5.03i)11-s + (1.46 − 0.924i)12-s + (−2.04 + 3.54i)13-s + (−2.01 + 3.48i)14-s + (−4.67 + 2.95i)15-s + (−0.5 − 0.866i)16-s − 3.84·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.884 − 0.465i)3-s + (−0.249 + 0.433i)4-s + (0.713 − 1.23i)5-s + (0.0277 + 0.706i)6-s + (−0.761 − 1.31i)7-s + 0.353·8-s + (0.566 + 0.824i)9-s − 1.00·10-s + (−0.877 − 1.51i)11-s + (0.422 − 0.266i)12-s + (−0.566 + 0.982i)13-s + (−0.538 + 0.932i)14-s + (−1.20 + 0.761i)15-s + (−0.125 − 0.216i)16-s − 0.932·17-s + ⋯ |
Λ(s)=(=(1098s/2ΓC(s)L(s)(−0.250−0.968i)Λ(2−s)
Λ(s)=(=(1098s/2ΓC(s+1/2)L(s)(−0.250−0.968i)Λ(1−s)
Degree: |
2 |
Conductor: |
1098
= 2⋅32⋅61
|
Sign: |
−0.250−0.968i
|
Analytic conductor: |
8.76757 |
Root analytic conductor: |
2.96100 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1098(733,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1098, ( :1/2), −0.250−0.968i)
|
Particular Values
L(1) |
≈ |
0.5118972814 |
L(21) |
≈ |
0.5118972814 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1+(1.53+0.806i)T |
| 61 | 1+(−0.5−0.866i)T |
good | 5 | 1+(−1.59+2.76i)T+(−2.5−4.33i)T2 |
| 7 | 1+(2.01+3.48i)T+(−3.5+6.06i)T2 |
| 11 | 1+(2.90+5.03i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2.04−3.54i)T+(−6.5−11.2i)T2 |
| 17 | 1+3.84T+17T2 |
| 19 | 1−3.74T+19T2 |
| 23 | 1+(−3.09+5.35i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.82+3.16i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.97−5.15i)T+(−15.5−26.8i)T2 |
| 37 | 1−7.36T+37T2 |
| 41 | 1+(−2.02+3.51i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5.31+9.20i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.78−8.29i)T+(−23.5+40.7i)T2 |
| 53 | 1−6.91T+53T2 |
| 59 | 1+(4.60−7.97i)T+(−29.5−51.0i)T2 |
| 67 | 1+(0.494−0.857i)T+(−33.5−58.0i)T2 |
| 71 | 1−6.71T+71T2 |
| 73 | 1+15.9T+73T2 |
| 79 | 1+(−6.03−10.4i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.758+1.31i)T+(−41.5+71.8i)T2 |
| 89 | 1−0.883T+89T2 |
| 97 | 1+(−2.85−4.94i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.324548671050771141065698158836, −8.680817695723821590553931174446, −7.57383530520536516156876466759, −6.78554625247136334939360323690, −5.80453278317862720873278572280, −4.91638410824573627313768210879, −4.06323515635081365381489479997, −2.54656313943366307167179383508, −1.13477466060181891643063108610, −0.31952976631360448718259655911,
2.20440622425686146578572097486, 3.15023124305238797847904287884, 4.85167265592084476467171959266, 5.54082600505629664610158316971, 6.16199181465808209992094924342, 7.02703425395360669618675039297, 7.62500751501548542659568987978, 9.206805348150377855300190466991, 9.708200233259377748846739452361, 10.14573521455820717719867220843