L(s) = 1 | + 14.0i·2-s + 84.5·3-s + 59.3·4-s + 63.0·5-s + 1.18e3i·6-s + 1.66e3i·7-s + 4.42e3i·8-s + 582.·9-s + 884. i·10-s + (4.86e3 − 1.38e4i)11-s + 5.01e3·12-s − 1.61e4i·13-s − 2.33e4·14-s + 5.32e3·15-s − 4.68e4·16-s − 5.82e4i·17-s + ⋯ |
L(s) = 1 | + 0.876i·2-s + 1.04·3-s + 0.231·4-s + 0.100·5-s + 0.914i·6-s + 0.694i·7-s + 1.07i·8-s + 0.0887·9-s + 0.0884i·10-s + (0.332 − 0.943i)11-s + 0.241·12-s − 0.566i·13-s − 0.608·14-s + 0.105·15-s − 0.714·16-s − 0.697i·17-s + ⋯ |
Λ(s)=(=(11s/2ΓC(s)L(s)(0.332−0.943i)Λ(9−s)
Λ(s)=(=(11s/2ΓC(s+4)L(s)(0.332−0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
11
|
Sign: |
0.332−0.943i
|
Analytic conductor: |
4.48116 |
Root analytic conductor: |
2.11687 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ11(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 11, ( :4), 0.332−0.943i)
|
Particular Values
L(29) |
≈ |
1.78911+1.26656i |
L(21) |
≈ |
1.78911+1.26656i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(−4.86e3+1.38e4i)T |
good | 2 | 1−14.0iT−256T2 |
| 3 | 1−84.5T+6.56e3T2 |
| 5 | 1−63.0T+3.90e5T2 |
| 7 | 1−1.66e3iT−5.76e6T2 |
| 13 | 1+1.61e4iT−8.15e8T2 |
| 17 | 1+5.82e4iT−6.97e9T2 |
| 19 | 1+1.72e4iT−1.69e10T2 |
| 23 | 1−2.90e5T+7.83e10T2 |
| 29 | 1+1.15e6iT−5.00e11T2 |
| 31 | 1+5.04e5T+8.52e11T2 |
| 37 | 1+5.62e5T+3.51e12T2 |
| 41 | 1−9.57e5iT−7.98e12T2 |
| 43 | 1−6.28e6iT−1.16e13T2 |
| 47 | 1−7.14e6T+2.38e13T2 |
| 53 | 1+5.44e6T+6.22e13T2 |
| 59 | 1+1.63e7T+1.46e14T2 |
| 61 | 1−1.66e7iT−1.91e14T2 |
| 67 | 1−2.30e7T+4.06e14T2 |
| 71 | 1+1.66e7T+6.45e14T2 |
| 73 | 1−5.01e7iT−8.06e14T2 |
| 79 | 1+4.05e7iT−1.51e15T2 |
| 83 | 1+4.65e7iT−2.25e15T2 |
| 89 | 1−9.49e7T+3.93e15T2 |
| 97 | 1+3.42e7T+7.83e15T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.00253606306714551156566277056, −17.27645964664228780005052606454, −15.80070137687546990254844183104, −14.81267030084517479038022361942, −13.63746380045899782518112603201, −11.47056105360012306615555929408, −9.053650980498135914826333118106, −7.82519504149597608241120338744, −5.85417590102816912254671156201, −2.72988702990547371793035530900,
1.86310637002698378178010381099, 3.69023494888069122645372678250, 7.18077094961160684637032025729, 9.236785279790319063992905918690, 10.71780601541548590953311467667, 12.41707877893598020109933809826, 13.90374732011962460092528261892, 15.25423954456883422903737431540, 17.05078024156280932306721358951, 18.97730020908900731616768106635