L(s) = 1 | + (0.707 + 0.707i)2-s + (0.292 + 0.292i)3-s + 1.00i·4-s + (0.707 + 2.12i)5-s + 0.414i·6-s + (−2.12 − 2.12i)7-s + (−0.707 + 0.707i)8-s − 2.82i·9-s + (−0.999 + 2i)10-s + (1.41 + 3i)11-s + (−0.292 + 0.292i)12-s + (3 − 3i)13-s − 3i·14-s + (−0.414 + 0.828i)15-s − 1.00·16-s + (−0.878 − 0.878i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.169 + 0.169i)3-s + 0.500i·4-s + (0.316 + 0.948i)5-s + 0.169i·6-s + (−0.801 − 0.801i)7-s + (−0.250 + 0.250i)8-s − 0.942i·9-s + (−0.316 + 0.632i)10-s + (0.426 + 0.904i)11-s + (−0.0845 + 0.0845i)12-s + (0.832 − 0.832i)13-s − 0.801i·14-s + (−0.106 + 0.213i)15-s − 0.250·16-s + (−0.213 − 0.213i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.545 - 0.838i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.545 - 0.838i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17909 + 0.639621i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17909 + 0.639621i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-0.707 - 2.12i)T \) |
| 11 | \( 1 + (-1.41 - 3i)T \) |
good | 3 | \( 1 + (-0.292 - 0.292i)T + 3iT^{2} \) |
| 7 | \( 1 + (2.12 + 2.12i)T + 7iT^{2} \) |
| 13 | \( 1 + (-3 + 3i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.878 + 0.878i)T + 17iT^{2} \) |
| 19 | \( 1 + 3T + 19T^{2} \) |
| 23 | \( 1 + (5.82 + 5.82i)T + 23iT^{2} \) |
| 29 | \( 1 - 7.24T + 29T^{2} \) |
| 31 | \( 1 - 1.24T + 31T^{2} \) |
| 37 | \( 1 + (4.12 - 4.12i)T - 37iT^{2} \) |
| 41 | \( 1 - 10.2iT - 41T^{2} \) |
| 43 | \( 1 + (7.24 - 7.24i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.58 + 1.58i)T - 47iT^{2} \) |
| 53 | \( 1 + (-2.46 - 2.46i)T + 53iT^{2} \) |
| 59 | \( 1 - 1.41iT - 59T^{2} \) |
| 61 | \( 1 + 1.24iT - 61T^{2} \) |
| 67 | \( 1 + (4 - 4i)T - 67iT^{2} \) |
| 71 | \( 1 - 7.24T + 71T^{2} \) |
| 73 | \( 1 + (-6 + 6i)T - 73iT^{2} \) |
| 79 | \( 1 - 1.75T + 79T^{2} \) |
| 83 | \( 1 + (-1.24 + 1.24i)T - 83iT^{2} \) |
| 89 | \( 1 - 11.4iT - 89T^{2} \) |
| 97 | \( 1 + (-6.24 + 6.24i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.94899837191289466138790556587, −13.01695573167967684617661521812, −11.97009170806135149141438759919, −10.47587401765433130363582167783, −9.765061844068366462901407380717, −8.234419204157333859961660367458, −6.66982817656714865729393670030, −6.38135762585198493384827002430, −4.24691816132634715133386340351, −3.09814769631830291355157683830,
2.00281678291443671113746900445, 3.85074730143178893186960108990, 5.41647617266707158627460822550, 6.37611975826394405004313110237, 8.422900226516719833074242586972, 9.128431095279566032597316304171, 10.42010946134101646885186404052, 11.69325087857158178823418263557, 12.50468959796832512801882494495, 13.61875722828907539456556723254