Properties

Label 2-110-55.43-c1-0-2
Degree 22
Conductor 110110
Sign 0.5450.838i0.545 - 0.838i
Analytic cond. 0.8783540.878354
Root an. cond. 0.9372050.937205
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + (0.292 + 0.292i)3-s + 1.00i·4-s + (0.707 + 2.12i)5-s + 0.414i·6-s + (−2.12 − 2.12i)7-s + (−0.707 + 0.707i)8-s − 2.82i·9-s + (−0.999 + 2i)10-s + (1.41 + 3i)11-s + (−0.292 + 0.292i)12-s + (3 − 3i)13-s − 3i·14-s + (−0.414 + 0.828i)15-s − 1.00·16-s + (−0.878 − 0.878i)17-s + ⋯
L(s)  = 1  + (0.499 + 0.499i)2-s + (0.169 + 0.169i)3-s + 0.500i·4-s + (0.316 + 0.948i)5-s + 0.169i·6-s + (−0.801 − 0.801i)7-s + (−0.250 + 0.250i)8-s − 0.942i·9-s + (−0.316 + 0.632i)10-s + (0.426 + 0.904i)11-s + (−0.0845 + 0.0845i)12-s + (0.832 − 0.832i)13-s − 0.801i·14-s + (−0.106 + 0.213i)15-s − 0.250·16-s + (−0.213 − 0.213i)17-s + ⋯

Functional equation

Λ(s)=(110s/2ΓC(s)L(s)=((0.5450.838i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.545 - 0.838i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(110s/2ΓC(s+1/2)L(s)=((0.5450.838i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.545 - 0.838i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 110110    =    25112 \cdot 5 \cdot 11
Sign: 0.5450.838i0.545 - 0.838i
Analytic conductor: 0.8783540.878354
Root analytic conductor: 0.9372050.937205
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ110(43,)\chi_{110} (43, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 110, ( :1/2), 0.5450.838i)(2,\ 110,\ (\ :1/2),\ 0.545 - 0.838i)

Particular Values

L(1)L(1) \approx 1.17909+0.639621i1.17909 + 0.639621i
L(12)L(\frac12) \approx 1.17909+0.639621i1.17909 + 0.639621i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
5 1+(0.7072.12i)T 1 + (-0.707 - 2.12i)T
11 1+(1.413i)T 1 + (-1.41 - 3i)T
good3 1+(0.2920.292i)T+3iT2 1 + (-0.292 - 0.292i)T + 3iT^{2}
7 1+(2.12+2.12i)T+7iT2 1 + (2.12 + 2.12i)T + 7iT^{2}
13 1+(3+3i)T13iT2 1 + (-3 + 3i)T - 13iT^{2}
17 1+(0.878+0.878i)T+17iT2 1 + (0.878 + 0.878i)T + 17iT^{2}
19 1+3T+19T2 1 + 3T + 19T^{2}
23 1+(5.82+5.82i)T+23iT2 1 + (5.82 + 5.82i)T + 23iT^{2}
29 17.24T+29T2 1 - 7.24T + 29T^{2}
31 11.24T+31T2 1 - 1.24T + 31T^{2}
37 1+(4.124.12i)T37iT2 1 + (4.12 - 4.12i)T - 37iT^{2}
41 110.2iT41T2 1 - 10.2iT - 41T^{2}
43 1+(7.247.24i)T43iT2 1 + (7.24 - 7.24i)T - 43iT^{2}
47 1+(1.58+1.58i)T47iT2 1 + (-1.58 + 1.58i)T - 47iT^{2}
53 1+(2.462.46i)T+53iT2 1 + (-2.46 - 2.46i)T + 53iT^{2}
59 11.41iT59T2 1 - 1.41iT - 59T^{2}
61 1+1.24iT61T2 1 + 1.24iT - 61T^{2}
67 1+(44i)T67iT2 1 + (4 - 4i)T - 67iT^{2}
71 17.24T+71T2 1 - 7.24T + 71T^{2}
73 1+(6+6i)T73iT2 1 + (-6 + 6i)T - 73iT^{2}
79 11.75T+79T2 1 - 1.75T + 79T^{2}
83 1+(1.24+1.24i)T83iT2 1 + (-1.24 + 1.24i)T - 83iT^{2}
89 111.4iT89T2 1 - 11.4iT - 89T^{2}
97 1+(6.24+6.24i)T97iT2 1 + (-6.24 + 6.24i)T - 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.94899837191289466138790556587, −13.01695573167967684617661521812, −11.97009170806135149141438759919, −10.47587401765433130363582167783, −9.765061844068366462901407380717, −8.234419204157333859961660367458, −6.66982817656714865729393670030, −6.38135762585198493384827002430, −4.24691816132634715133386340351, −3.09814769631830291355157683830, 2.00281678291443671113746900445, 3.85074730143178893186960108990, 5.41647617266707158627460822550, 6.37611975826394405004313110237, 8.422900226516719833074242586972, 9.128431095279566032597316304171, 10.42010946134101646885186404052, 11.69325087857158178823418263557, 12.50468959796832512801882494495, 13.61875722828907539456556723254

Graph of the ZZ-function along the critical line