L(s) = 1 | + (−1.66 − 2.28i)2-s + (−2.06 − 6.36i)3-s + (−2.47 + 7.60i)4-s + (−9.04 − 6.57i)5-s + (−11.1 + 15.3i)6-s + (87.9 + 28.5i)7-s + (21.5 − 6.99i)8-s + (29.3 − 21.2i)9-s + 31.6i·10-s + (114. − 39.1i)11-s + 53.5·12-s + (−177. − 244. i)13-s + (−80.8 − 248. i)14-s + (−23.1 + 71.1i)15-s + (−51.7 − 37.6i)16-s + (−235. + 324. i)17-s + ⋯ |
L(s) = 1 | + (−0.415 − 0.572i)2-s + (−0.229 − 0.707i)3-s + (−0.154 + 0.475i)4-s + (−0.361 − 0.262i)5-s + (−0.308 + 0.425i)6-s + (1.79 + 0.583i)7-s + (0.336 − 0.109i)8-s + (0.361 − 0.262i)9-s + 0.316i·10-s + (0.946 − 0.323i)11-s + 0.371·12-s + (−1.05 − 1.44i)13-s + (−0.412 − 1.26i)14-s + (−0.102 + 0.316i)15-s + (−0.202 − 0.146i)16-s + (−0.815 + 1.12i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.516+0.855i)Λ(5−s)
Λ(s)=(=(110s/2ΓC(s+2)L(s)(−0.516+0.855i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.516+0.855i
|
Analytic conductor: |
11.3706 |
Root analytic conductor: |
3.37204 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :2), −0.516+0.855i)
|
Particular Values
L(25) |
≈ |
0.688434−1.22002i |
L(21) |
≈ |
0.688434−1.22002i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.66+2.28i)T |
| 5 | 1+(9.04+6.57i)T |
| 11 | 1+(−114.+39.1i)T |
good | 3 | 1+(2.06+6.36i)T+(−65.5+47.6i)T2 |
| 7 | 1+(−87.9−28.5i)T+(1.94e3+1.41e3i)T2 |
| 13 | 1+(177.+244.i)T+(−8.82e3+2.71e4i)T2 |
| 17 | 1+(235.−324.i)T+(−2.58e4−7.94e4i)T2 |
| 19 | 1+(−272.+88.4i)T+(1.05e5−7.66e4i)T2 |
| 23 | 1−73.4T+2.79e5T2 |
| 29 | 1+(1.04e3+338.i)T+(5.72e5+4.15e5i)T2 |
| 31 | 1+(−878.+637.i)T+(2.85e5−8.78e5i)T2 |
| 37 | 1+(−677.+2.08e3i)T+(−1.51e6−1.10e6i)T2 |
| 41 | 1+(−216.+70.4i)T+(2.28e6−1.66e6i)T2 |
| 43 | 1+1.76e3iT−3.41e6T2 |
| 47 | 1+(−19.7−60.7i)T+(−3.94e6+2.86e6i)T2 |
| 53 | 1+(−1.40e3+1.02e3i)T+(2.43e6−7.50e6i)T2 |
| 59 | 1+(1.10e3−3.40e3i)T+(−9.80e6−7.12e6i)T2 |
| 61 | 1+(−278.+383.i)T+(−4.27e6−1.31e7i)T2 |
| 67 | 1+3.53e3T+2.01e7T2 |
| 71 | 1+(2.19e3+1.59e3i)T+(7.85e6+2.41e7i)T2 |
| 73 | 1+(−1.25e3−407.i)T+(2.29e7+1.66e7i)T2 |
| 79 | 1+(−1.91e3−2.64e3i)T+(−1.20e7+3.70e7i)T2 |
| 83 | 1+(4.25e3−5.85e3i)T+(−1.46e7−4.51e7i)T2 |
| 89 | 1−8.32e3T+6.27e7T2 |
| 97 | 1+(9.42e3−6.84e3i)T+(2.73e7−8.41e7i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.28236934611918057823736418614, −11.69279698253942834218241108917, −10.76235963583766164588765505114, −9.254117671373915087266064764037, −8.150184333979090330103245336502, −7.41653534293237236273069740729, −5.61796500738436354600000654344, −4.18068510439725967314007179480, −2.08371237223992447318529394573, −0.822057650508988985183642841846,
1.59532196937924567677000766009, 4.43581411322666052005925493145, 4.83548296885355214511321966782, 6.95026413944093817794115781636, 7.62689504431634659260887257455, 9.057217776223549987851749745155, 10.00062509681836220255419941825, 11.28597306744895776123871996150, 11.68895636385256193277170580730, 13.81313549413059872937068157471