Properties

Label 2-110-11.8-c4-0-10
Degree $2$
Conductor $110$
Sign $-0.516 + 0.855i$
Analytic cond. $11.3706$
Root an. cond. $3.37204$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.66 − 2.28i)2-s + (−2.06 − 6.36i)3-s + (−2.47 + 7.60i)4-s + (−9.04 − 6.57i)5-s + (−11.1 + 15.3i)6-s + (87.9 + 28.5i)7-s + (21.5 − 6.99i)8-s + (29.3 − 21.2i)9-s + 31.6i·10-s + (114. − 39.1i)11-s + 53.5·12-s + (−177. − 244. i)13-s + (−80.8 − 248. i)14-s + (−23.1 + 71.1i)15-s + (−51.7 − 37.6i)16-s + (−235. + 324. i)17-s + ⋯
L(s)  = 1  + (−0.415 − 0.572i)2-s + (−0.229 − 0.707i)3-s + (−0.154 + 0.475i)4-s + (−0.361 − 0.262i)5-s + (−0.308 + 0.425i)6-s + (1.79 + 0.583i)7-s + (0.336 − 0.109i)8-s + (0.361 − 0.262i)9-s + 0.316i·10-s + (0.946 − 0.323i)11-s + 0.371·12-s + (−1.05 − 1.44i)13-s + (−0.412 − 1.26i)14-s + (−0.102 + 0.316i)15-s + (−0.202 − 0.146i)16-s + (−0.815 + 1.12i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.516 + 0.855i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.516 + 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $-0.516 + 0.855i$
Analytic conductor: \(11.3706\)
Root analytic conductor: \(3.37204\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{110} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :2),\ -0.516 + 0.855i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.688434 - 1.22002i\)
\(L(\frac12)\) \(\approx\) \(0.688434 - 1.22002i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.66 + 2.28i)T \)
5 \( 1 + (9.04 + 6.57i)T \)
11 \( 1 + (-114. + 39.1i)T \)
good3 \( 1 + (2.06 + 6.36i)T + (-65.5 + 47.6i)T^{2} \)
7 \( 1 + (-87.9 - 28.5i)T + (1.94e3 + 1.41e3i)T^{2} \)
13 \( 1 + (177. + 244. i)T + (-8.82e3 + 2.71e4i)T^{2} \)
17 \( 1 + (235. - 324. i)T + (-2.58e4 - 7.94e4i)T^{2} \)
19 \( 1 + (-272. + 88.4i)T + (1.05e5 - 7.66e4i)T^{2} \)
23 \( 1 - 73.4T + 2.79e5T^{2} \)
29 \( 1 + (1.04e3 + 338. i)T + (5.72e5 + 4.15e5i)T^{2} \)
31 \( 1 + (-878. + 637. i)T + (2.85e5 - 8.78e5i)T^{2} \)
37 \( 1 + (-677. + 2.08e3i)T + (-1.51e6 - 1.10e6i)T^{2} \)
41 \( 1 + (-216. + 70.4i)T + (2.28e6 - 1.66e6i)T^{2} \)
43 \( 1 + 1.76e3iT - 3.41e6T^{2} \)
47 \( 1 + (-19.7 - 60.7i)T + (-3.94e6 + 2.86e6i)T^{2} \)
53 \( 1 + (-1.40e3 + 1.02e3i)T + (2.43e6 - 7.50e6i)T^{2} \)
59 \( 1 + (1.10e3 - 3.40e3i)T + (-9.80e6 - 7.12e6i)T^{2} \)
61 \( 1 + (-278. + 383. i)T + (-4.27e6 - 1.31e7i)T^{2} \)
67 \( 1 + 3.53e3T + 2.01e7T^{2} \)
71 \( 1 + (2.19e3 + 1.59e3i)T + (7.85e6 + 2.41e7i)T^{2} \)
73 \( 1 + (-1.25e3 - 407. i)T + (2.29e7 + 1.66e7i)T^{2} \)
79 \( 1 + (-1.91e3 - 2.64e3i)T + (-1.20e7 + 3.70e7i)T^{2} \)
83 \( 1 + (4.25e3 - 5.85e3i)T + (-1.46e7 - 4.51e7i)T^{2} \)
89 \( 1 - 8.32e3T + 6.27e7T^{2} \)
97 \( 1 + (9.42e3 - 6.84e3i)T + (2.73e7 - 8.41e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.28236934611918057823736418614, −11.69279698253942834218241108917, −10.76235963583766164588765505114, −9.254117671373915087266064764037, −8.150184333979090330103245336502, −7.41653534293237236273069740729, −5.61796500738436354600000654344, −4.18068510439725967314007179480, −2.08371237223992447318529394573, −0.822057650508988985183642841846, 1.59532196937924567677000766009, 4.43581411322666052005925493145, 4.83548296885355214511321966782, 6.95026413944093817794115781636, 7.62689504431634659260887257455, 9.057217776223549987851749745155, 10.00062509681836220255419941825, 11.28597306744895776123871996150, 11.68895636385256193277170580730, 13.81313549413059872937068157471

Graph of the $Z$-function along the critical line