L(s) = 1 | + (1.64 + 1.19i)3-s + (−3.29 + 2.39i)7-s + (0.343 + 1.05i)9-s + (0.00208 + 3.31i)11-s + (−1.80 − 5.56i)13-s + (−2.13 + 6.56i)17-s + (4.84 + 3.51i)19-s − 8.26·21-s − 1.37·23-s + (1.18 − 3.64i)27-s + (−6.12 + 4.44i)29-s + (1.25 + 3.85i)31-s + (−3.94 + 5.44i)33-s + (−7.98 + 5.80i)37-s + (3.66 − 11.2i)39-s + ⋯ |
L(s) = 1 | + (0.947 + 0.688i)3-s + (−1.24 + 0.905i)7-s + (0.114 + 0.352i)9-s + (0.000630 + 0.999i)11-s + (−0.501 − 1.54i)13-s + (−0.517 + 1.59i)17-s + (1.11 + 0.806i)19-s − 1.80·21-s − 0.287·23-s + (0.227 − 0.700i)27-s + (−1.13 + 0.825i)29-s + (0.225 + 0.693i)31-s + (−0.687 + 0.947i)33-s + (−1.31 + 0.954i)37-s + (0.587 − 1.80i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.781 - 0.623i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.781 - 0.623i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.338974533\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.338974533\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-0.00208 - 3.31i)T \) |
good | 3 | \( 1 + (-1.64 - 1.19i)T + (0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 + (3.29 - 2.39i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.80 + 5.56i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (2.13 - 6.56i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-4.84 - 3.51i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 1.37T + 23T^{2} \) |
| 29 | \( 1 + (6.12 - 4.44i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.25 - 3.85i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (7.98 - 5.80i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (1.79 + 1.30i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 2.49T + 43T^{2} \) |
| 47 | \( 1 + (3.50 + 2.54i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-2.83 - 8.71i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-7.00 + 5.09i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.37 + 4.24i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 2.67T + 67T^{2} \) |
| 71 | \( 1 + (-1.91 + 5.89i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-2.80 + 2.04i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.24 - 3.82i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (2.55 - 7.86i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 16.9T + 89T^{2} \) |
| 97 | \( 1 + (0.463 + 1.42i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04657745332939971612554444156, −9.439212401100403283471316407982, −8.635423335338362254126501420583, −7.954932402965466476413861247922, −6.85706946563766720476002201765, −5.86882236207494109491085717529, −5.02901653861688298705586146075, −3.59297774619743882052124664699, −3.23594670269162859809890333702, −2.04441865776561578599086064488,
0.49055501578878481584953446202, 2.17149034660944443814401326299, 3.10096110736859775747037273841, 3.95209372797537468208055550028, 5.21979225152361709584349738477, 6.56530924741580249390146078851, 7.09699473492119564452068954524, 7.66278522706977007284560163238, 8.923191246473913018698864270254, 9.313803066029419150519774517033