L(s) = 1 | + 4.69i·3-s + 7.54·7-s − 13.0·9-s + (5.78 − 9.35i)11-s − 0.829·13-s + 29.8·17-s − 36.2i·19-s + 35.4i·21-s − 29.7i·23-s − 18.9i·27-s + 10.0i·29-s + 34.6·31-s + (43.9 + 27.1i)33-s − 61.9i·37-s − 3.89i·39-s + ⋯ |
L(s) = 1 | + 1.56i·3-s + 1.07·7-s − 1.44·9-s + (0.525 − 0.850i)11-s − 0.0637·13-s + 1.75·17-s − 1.90i·19-s + 1.68i·21-s − 1.29i·23-s − 0.700i·27-s + 0.346i·29-s + 1.11·31-s + (1.33 + 0.822i)33-s − 1.67i·37-s − 0.0997i·39-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(0.850−0.525i)Λ(3−s)
Λ(s)=(=(1100s/2ΓC(s+1)L(s)(0.850−0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
0.850−0.525i
|
Analytic conductor: |
29.9728 |
Root analytic conductor: |
5.47474 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :1), 0.850−0.525i)
|
Particular Values
L(23) |
≈ |
2.342939521 |
L(21) |
≈ |
2.342939521 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1+(−5.78+9.35i)T |
good | 3 | 1−4.69iT−9T2 |
| 7 | 1−7.54T+49T2 |
| 13 | 1+0.829T+169T2 |
| 17 | 1−29.8T+289T2 |
| 19 | 1+36.2iT−361T2 |
| 23 | 1+29.7iT−529T2 |
| 29 | 1−10.0iT−841T2 |
| 31 | 1−34.6T+961T2 |
| 37 | 1+61.9iT−1.36e3T2 |
| 41 | 1+11.1iT−1.68e3T2 |
| 43 | 1−39.4T+1.84e3T2 |
| 47 | 1−6.35iT−2.20e3T2 |
| 53 | 1+56.5iT−2.80e3T2 |
| 59 | 1+70.4T+3.48e3T2 |
| 61 | 1+8.41iT−3.72e3T2 |
| 67 | 1+18.7iT−4.48e3T2 |
| 71 | 1+3.79T+5.04e3T2 |
| 73 | 1+70.9T+5.32e3T2 |
| 79 | 1−127.iT−6.24e3T2 |
| 83 | 1+100.T+6.88e3T2 |
| 89 | 1−66.0T+7.92e3T2 |
| 97 | 1+1.65iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.742751728313078323390183695516, −8.954087275229390455807690756914, −8.406403965645817884524761511712, −7.37010976257593535298229262434, −6.09203069853569857812647222221, −5.15718883552806384938603911286, −4.59266667857322881501224142278, −3.65584104114005084935008971426, −2.66373460349110374386882008648, −0.829515958874335624927622064239,
1.36276272872793424305800197059, 1.57393253202348613038079479609, 3.06689935974261009279633362357, 4.39041434988422098757748280470, 5.58325401914092580644596854042, 6.22921966571941195336078055329, 7.38955850320620024258800676602, 7.77677622563457311914279031628, 8.332105731958723532226905172875, 9.634211636541128893106978548597