L(s) = 1 | + 3.41·3-s − 0.558i·7-s + 2.66·9-s + (2.82 − 10.6i)11-s − 18.1i·13-s − 32.0i·17-s + 15.7i·19-s − 1.90i·21-s − 31.7·23-s − 21.6·27-s + 48.3i·29-s − 43.3·31-s + (9.63 − 36.3i)33-s − 21.4·37-s − 61.8i·39-s + ⋯ |
L(s) = 1 | + 1.13·3-s − 0.0798i·7-s + 0.296·9-s + (0.256 − 0.966i)11-s − 1.39i·13-s − 1.88i·17-s + 0.828i·19-s − 0.0908i·21-s − 1.38·23-s − 0.801·27-s + 1.66i·29-s − 1.39·31-s + (0.291 − 1.10i)33-s − 0.579·37-s − 1.58i·39-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(−0.256+0.966i)Λ(3−s)
Λ(s)=(=(1100s/2ΓC(s+1)L(s)(−0.256+0.966i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
−0.256+0.966i
|
Analytic conductor: |
29.9728 |
Root analytic conductor: |
5.47474 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(901,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :1), −0.256+0.966i)
|
Particular Values
L(23) |
≈ |
2.101984454 |
L(21) |
≈ |
2.101984454 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1+(−2.82+10.6i)T |
good | 3 | 1−3.41T+9T2 |
| 7 | 1+0.558iT−49T2 |
| 13 | 1+18.1iT−169T2 |
| 17 | 1+32.0iT−289T2 |
| 19 | 1−15.7iT−361T2 |
| 23 | 1+31.7T+529T2 |
| 29 | 1−48.3iT−841T2 |
| 31 | 1+43.3T+961T2 |
| 37 | 1+21.4T+1.36e3T2 |
| 41 | 1+38.9iT−1.68e3T2 |
| 43 | 1+23.3iT−1.84e3T2 |
| 47 | 1−75.2T+2.20e3T2 |
| 53 | 1−8.43T+2.80e3T2 |
| 59 | 1+29.6T+3.48e3T2 |
| 61 | 1+64.1iT−3.72e3T2 |
| 67 | 1+18.8T+4.48e3T2 |
| 71 | 1−94.8T+5.04e3T2 |
| 73 | 1−0.945iT−5.32e3T2 |
| 79 | 1+73.2iT−6.24e3T2 |
| 83 | 1+161.iT−6.88e3T2 |
| 89 | 1−91.5T+7.92e3T2 |
| 97 | 1−33.1T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.118601144541406062123364267158, −8.756393943036475269173879836241, −7.76887281247716116082907075994, −7.28858885534177793606740217578, −5.88513750525548452442891740874, −5.22510329761939024673343104199, −3.67545400396807706891286091046, −3.21187951710206860130024400685, −2.10995734993204871729694823716, −0.50832468429743735143525845271,
1.79153770688133166670528255821, 2.37669566422374290195358269679, 3.91236070077916206465907960992, 4.22215916989879522826921432501, 5.76403489352851384325915939907, 6.65439771406830534507041116318, 7.59273968053250140447774575726, 8.310735605166026299840166279332, 9.111595426018866479424576894087, 9.622080100084117902951907364785