L(s) = 1 | − 11.4i·3-s + 39.4i·7-s + 111.·9-s − 121·11-s + 1.18e3i·13-s − 2.19e3i·17-s − 1.86e3·19-s + 452.·21-s − 337. i·23-s − 4.06e3i·27-s + 5.43e3·29-s + 139.·31-s + 1.38e3i·33-s + 5.94e3i·37-s + 1.35e4·39-s + ⋯ |
L(s) = 1 | − 0.736i·3-s + 0.303i·7-s + 0.457·9-s − 0.301·11-s + 1.94i·13-s − 1.84i·17-s − 1.18·19-s + 0.223·21-s − 0.133i·23-s − 1.07i·27-s + 1.19·29-s + 0.0260·31-s + 0.222i·33-s + 0.713i·37-s + 1.42·39-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(1100s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
176.422 |
Root analytic conductor: |
13.2824 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(749,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
1.495666540 |
L(21) |
≈ |
1.495666540 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1+121T |
good | 3 | 1+11.4iT−243T2 |
| 7 | 1−39.4iT−1.68e4T2 |
| 13 | 1−1.18e3iT−3.71e5T2 |
| 17 | 1+2.19e3iT−1.41e6T2 |
| 19 | 1+1.86e3T+2.47e6T2 |
| 23 | 1+337.iT−6.43e6T2 |
| 29 | 1−5.43e3T+2.05e7T2 |
| 31 | 1−139.T+2.86e7T2 |
| 37 | 1−5.94e3iT−6.93e7T2 |
| 41 | 1−4.63e3T+1.15e8T2 |
| 43 | 1−1.15e3iT−1.47e8T2 |
| 47 | 1−3.41e3iT−2.29e8T2 |
| 53 | 1+5.65e3iT−4.18e8T2 |
| 59 | 1+1.36e4T+7.14e8T2 |
| 61 | 1+3.42e4T+8.44e8T2 |
| 67 | 1+9.96e3iT−1.35e9T2 |
| 71 | 1+1.98e4T+1.80e9T2 |
| 73 | 1−5.16e4iT−2.07e9T2 |
| 79 | 1+5.09e4T+3.07e9T2 |
| 83 | 1−8.62e3iT−3.93e9T2 |
| 89 | 1−2.99e4T+5.58e9T2 |
| 97 | 1−4.88e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.215525648740368380606469758025, −8.475260948014453464421385932999, −7.42723736850743746645716444086, −6.81901904183637951233257218490, −6.19842363994151196010538140998, −4.82462188272964759421427834055, −4.26193077337945109707428935856, −2.73146857605401325412102011246, −1.98420852725155193477700238157, −0.932995029640330184735261941202,
0.31192322055350848010806043173, 1.52626091695872239114320824093, 2.85097396759804637067713243550, 3.82411314157394193909290391569, 4.52089667855864778015685285805, 5.56250393273855770003121064106, 6.30358287705083717695681325308, 7.49371227597519187195961149195, 8.196201185228477294043659081357, 8.946380396210580849151096313167