Properties

Label 2-1100-5.4-c5-0-15
Degree $2$
Conductor $1100$
Sign $0.447 - 0.894i$
Analytic cond. $176.422$
Root an. cond. $13.2824$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11.4i·3-s + 39.4i·7-s + 111.·9-s − 121·11-s + 1.18e3i·13-s − 2.19e3i·17-s − 1.86e3·19-s + 452.·21-s − 337. i·23-s − 4.06e3i·27-s + 5.43e3·29-s + 139.·31-s + 1.38e3i·33-s + 5.94e3i·37-s + 1.35e4·39-s + ⋯
L(s)  = 1  − 0.736i·3-s + 0.303i·7-s + 0.457·9-s − 0.301·11-s + 1.94i·13-s − 1.84i·17-s − 1.18·19-s + 0.223·21-s − 0.133i·23-s − 1.07i·27-s + 1.19·29-s + 0.0260·31-s + 0.222i·33-s + 0.713i·37-s + 1.42·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(176.422\)
Root analytic conductor: \(13.2824\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :5/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.495666540\)
\(L(\frac12)\) \(\approx\) \(1.495666540\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + 121T \)
good3 \( 1 + 11.4iT - 243T^{2} \)
7 \( 1 - 39.4iT - 1.68e4T^{2} \)
13 \( 1 - 1.18e3iT - 3.71e5T^{2} \)
17 \( 1 + 2.19e3iT - 1.41e6T^{2} \)
19 \( 1 + 1.86e3T + 2.47e6T^{2} \)
23 \( 1 + 337. iT - 6.43e6T^{2} \)
29 \( 1 - 5.43e3T + 2.05e7T^{2} \)
31 \( 1 - 139.T + 2.86e7T^{2} \)
37 \( 1 - 5.94e3iT - 6.93e7T^{2} \)
41 \( 1 - 4.63e3T + 1.15e8T^{2} \)
43 \( 1 - 1.15e3iT - 1.47e8T^{2} \)
47 \( 1 - 3.41e3iT - 2.29e8T^{2} \)
53 \( 1 + 5.65e3iT - 4.18e8T^{2} \)
59 \( 1 + 1.36e4T + 7.14e8T^{2} \)
61 \( 1 + 3.42e4T + 8.44e8T^{2} \)
67 \( 1 + 9.96e3iT - 1.35e9T^{2} \)
71 \( 1 + 1.98e4T + 1.80e9T^{2} \)
73 \( 1 - 5.16e4iT - 2.07e9T^{2} \)
79 \( 1 + 5.09e4T + 3.07e9T^{2} \)
83 \( 1 - 8.62e3iT - 3.93e9T^{2} \)
89 \( 1 - 2.99e4T + 5.58e9T^{2} \)
97 \( 1 - 4.88e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.215525648740368380606469758025, −8.475260948014453464421385932999, −7.42723736850743746645716444086, −6.81901904183637951233257218490, −6.19842363994151196010538140998, −4.82462188272964759421427834055, −4.26193077337945109707428935856, −2.73146857605401325412102011246, −1.98420852725155193477700238157, −0.932995029640330184735261941202, 0.31192322055350848010806043173, 1.52626091695872239114320824093, 2.85097396759804637067713243550, 3.82411314157394193909290391569, 4.52089667855864778015685285805, 5.56250393273855770003121064106, 6.30358287705083717695681325308, 7.49371227597519187195961149195, 8.196201185228477294043659081357, 8.946380396210580849151096313167

Graph of the $Z$-function along the critical line