Properties

Label 2-1100-5.4-c5-0-10
Degree $2$
Conductor $1100$
Sign $-0.894 - 0.447i$
Analytic cond. $176.422$
Root an. cond. $13.2824$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.426i·3-s − 59.7i·7-s + 242.·9-s − 121·11-s + 1.12e3i·13-s + 1.94e3i·17-s + 1.24e3·19-s + 25.5·21-s + 4.64e3i·23-s + 207. i·27-s − 1.00e3·29-s − 2.47e3·31-s − 51.6i·33-s − 1.08e4i·37-s − 480.·39-s + ⋯
L(s)  = 1  + 0.0273i·3-s − 0.461i·7-s + 0.999·9-s − 0.301·11-s + 1.84i·13-s + 1.63i·17-s + 0.791·19-s + 0.0126·21-s + 1.82i·23-s + 0.0547i·27-s − 0.220·29-s − 0.463·31-s − 0.00825i·33-s − 1.30i·37-s − 0.0505·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(176.422\)
Root analytic conductor: \(13.2824\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :5/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.279084123\)
\(L(\frac12)\) \(\approx\) \(1.279084123\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + 121T \)
good3 \( 1 - 0.426iT - 243T^{2} \)
7 \( 1 + 59.7iT - 1.68e4T^{2} \)
13 \( 1 - 1.12e3iT - 3.71e5T^{2} \)
17 \( 1 - 1.94e3iT - 1.41e6T^{2} \)
19 \( 1 - 1.24e3T + 2.47e6T^{2} \)
23 \( 1 - 4.64e3iT - 6.43e6T^{2} \)
29 \( 1 + 1.00e3T + 2.05e7T^{2} \)
31 \( 1 + 2.47e3T + 2.86e7T^{2} \)
37 \( 1 + 1.08e4iT - 6.93e7T^{2} \)
41 \( 1 + 1.17e4T + 1.15e8T^{2} \)
43 \( 1 + 6.90e3iT - 1.47e8T^{2} \)
47 \( 1 + 4.95e3iT - 2.29e8T^{2} \)
53 \( 1 + 8.17e3iT - 4.18e8T^{2} \)
59 \( 1 + 3.69e4T + 7.14e8T^{2} \)
61 \( 1 + 1.18e4T + 8.44e8T^{2} \)
67 \( 1 + 825. iT - 1.35e9T^{2} \)
71 \( 1 + 1.19e4T + 1.80e9T^{2} \)
73 \( 1 - 5.90e4iT - 2.07e9T^{2} \)
79 \( 1 - 2.63e3T + 3.07e9T^{2} \)
83 \( 1 + 1.08e5iT - 3.93e9T^{2} \)
89 \( 1 + 3.21e4T + 5.58e9T^{2} \)
97 \( 1 - 1.65e5iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.498560079866016655505892392567, −8.791865829040937068101513601527, −7.57754385064486987523433848733, −7.15933733385467007688169452934, −6.19187474705967285284262471136, −5.17732855128147697143688378791, −4.07703658589769479182515312991, −3.64194948117482996007648771563, −1.90963578624285681922389540821, −1.38745606187390969933632660655, 0.24146969983669057302087796865, 1.15789956436578743935704241579, 2.58220651382054327378960409091, 3.22412698211312693734720984964, 4.65559650281075897363165264012, 5.21932350151712180157554188815, 6.24445235678337608286356794733, 7.24790683299201263957619928648, 7.85971102231806112246870598109, 8.762323890089930716166785355517

Graph of the $Z$-function along the critical line