L(s) = 1 | + 0.426i·3-s − 59.7i·7-s + 242.·9-s − 121·11-s + 1.12e3i·13-s + 1.94e3i·17-s + 1.24e3·19-s + 25.5·21-s + 4.64e3i·23-s + 207. i·27-s − 1.00e3·29-s − 2.47e3·31-s − 51.6i·33-s − 1.08e4i·37-s − 480.·39-s + ⋯ |
L(s) = 1 | + 0.0273i·3-s − 0.461i·7-s + 0.999·9-s − 0.301·11-s + 1.84i·13-s + 1.63i·17-s + 0.791·19-s + 0.0126·21-s + 1.82i·23-s + 0.0547i·27-s − 0.220·29-s − 0.463·31-s − 0.00825i·33-s − 1.30i·37-s − 0.0505·39-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(−0.894−0.447i)Λ(6−s)
Λ(s)=(=(1100s/2ΓC(s+5/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
176.422 |
Root analytic conductor: |
13.2824 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(749,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :5/2), −0.894−0.447i)
|
Particular Values
L(3) |
≈ |
1.279084123 |
L(21) |
≈ |
1.279084123 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1+121T |
good | 3 | 1−0.426iT−243T2 |
| 7 | 1+59.7iT−1.68e4T2 |
| 13 | 1−1.12e3iT−3.71e5T2 |
| 17 | 1−1.94e3iT−1.41e6T2 |
| 19 | 1−1.24e3T+2.47e6T2 |
| 23 | 1−4.64e3iT−6.43e6T2 |
| 29 | 1+1.00e3T+2.05e7T2 |
| 31 | 1+2.47e3T+2.86e7T2 |
| 37 | 1+1.08e4iT−6.93e7T2 |
| 41 | 1+1.17e4T+1.15e8T2 |
| 43 | 1+6.90e3iT−1.47e8T2 |
| 47 | 1+4.95e3iT−2.29e8T2 |
| 53 | 1+8.17e3iT−4.18e8T2 |
| 59 | 1+3.69e4T+7.14e8T2 |
| 61 | 1+1.18e4T+8.44e8T2 |
| 67 | 1+825.iT−1.35e9T2 |
| 71 | 1+1.19e4T+1.80e9T2 |
| 73 | 1−5.90e4iT−2.07e9T2 |
| 79 | 1−2.63e3T+3.07e9T2 |
| 83 | 1+1.08e5iT−3.93e9T2 |
| 89 | 1+3.21e4T+5.58e9T2 |
| 97 | 1−1.65e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.498560079866016655505892392567, −8.791865829040937068101513601527, −7.57754385064486987523433848733, −7.15933733385467007688169452934, −6.19187474705967285284262471136, −5.17732855128147697143688378791, −4.07703658589769479182515312991, −3.64194948117482996007648771563, −1.90963578624285681922389540821, −1.38745606187390969933632660655,
0.24146969983669057302087796865, 1.15789956436578743935704241579, 2.58220651382054327378960409091, 3.22412698211312693734720984964, 4.65559650281075897363165264012, 5.21932350151712180157554188815, 6.24445235678337608286356794733, 7.24790683299201263957619928648, 7.85971102231806112246870598109, 8.762323890089930716166785355517