Properties

Label 2-1110-5.4-c1-0-12
Degree $2$
Conductor $1110$
Sign $-1$
Analytic cond. $8.86339$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + i·3-s − 4-s + 2.23i·5-s − 6-s + 2i·7-s i·8-s − 9-s − 2.23·10-s + 5.23·11-s i·12-s + 4.47i·13-s − 2·14-s − 2.23·15-s + 16-s + 4.47i·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.999i·5-s − 0.408·6-s + 0.755i·7-s − 0.353i·8-s − 0.333·9-s − 0.707·10-s + 1.57·11-s − 0.288i·12-s + 1.24i·13-s − 0.534·14-s − 0.577·15-s + 0.250·16-s + 1.08i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1110\)    =    \(2 \cdot 3 \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(8.86339\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1110} (889, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.566691179\)
\(L(\frac12)\) \(\approx\) \(1.566691179\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 - iT \)
5 \( 1 - 2.23iT \)
37 \( 1 - iT \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 5.23T + 11T^{2} \)
13 \( 1 - 4.47iT - 13T^{2} \)
17 \( 1 - 4.47iT - 17T^{2} \)
19 \( 1 - 7.23T + 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 + 2.47T + 31T^{2} \)
41 \( 1 + 4.47T + 41T^{2} \)
43 \( 1 + 10.4iT - 43T^{2} \)
47 \( 1 - 9.70iT - 47T^{2} \)
53 \( 1 + 12.4iT - 53T^{2} \)
59 \( 1 + 6.94T + 59T^{2} \)
61 \( 1 - 5.23T + 61T^{2} \)
67 \( 1 + 10.4iT - 67T^{2} \)
71 \( 1 + 2.47T + 71T^{2} \)
73 \( 1 + 10.4iT - 73T^{2} \)
79 \( 1 - 2.47T + 79T^{2} \)
83 \( 1 - 15.4iT - 83T^{2} \)
89 \( 1 - 7.52T + 89T^{2} \)
97 \( 1 + 8.18iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02492011057624879380367825723, −9.275244858119433600004795092222, −8.825227200721764963961086411746, −7.67830117841755347187842962042, −6.70636719900031347112568444633, −6.24021152893788896918988029078, −5.26430223891565387563656588570, −4.05903672584067963898766658599, −3.42314656851286579869555511541, −1.88940493153394150275301177940, 0.78334332832706153468519125823, 1.45657001153063217589613621064, 3.11770325065176283827982959646, 3.96910525310792983259091587082, 5.08589184260348488999640549100, 5.82620419311320945768086043482, 7.20950372246305573815087607833, 7.71428384071908031495650511529, 8.830012348720911360909356834759, 9.438557589058204321290624973862

Graph of the $Z$-function along the critical line