L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·6-s + (1.5 + 2.59i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s − 0.999·10-s − 2·11-s + (0.499 − 0.866i)12-s + (2.5 + 4.33i)13-s + 3·14-s + (0.499 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−1 + 1.73i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.223 − 0.387i)5-s + 0.408·6-s + (0.566 + 0.981i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s − 0.316·10-s − 0.603·11-s + (0.144 − 0.249i)12-s + (0.693 + 1.20i)13-s + 0.801·14-s + (0.129 − 0.223i)15-s + (−0.125 + 0.216i)16-s + (−0.242 + 0.420i)17-s + ⋯ |
Λ(s)=(=(1110s/2ΓC(s)L(s)(0.729−0.683i)Λ(2−s)
Λ(s)=(=(1110s/2ΓC(s+1/2)L(s)(0.729−0.683i)Λ(1−s)
Degree: |
2 |
Conductor: |
1110
= 2⋅3⋅5⋅37
|
Sign: |
0.729−0.683i
|
Analytic conductor: |
8.86339 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1110(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1110, ( :1/2), 0.729−0.683i)
|
Particular Values
L(1) |
≈ |
1.871962756 |
L(21) |
≈ |
1.871962756 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(−0.5−0.866i)T |
| 5 | 1+(0.5+0.866i)T |
| 37 | 1+(0.5+6.06i)T |
good | 7 | 1+(−1.5−2.59i)T+(−3.5+6.06i)T2 |
| 11 | 1+2T+11T2 |
| 13 | 1+(−2.5−4.33i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1−1.73i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.5−4.33i)T+(−9.5+16.4i)T2 |
| 23 | 1+8T+23T2 |
| 29 | 1−T+29T2 |
| 31 | 1−8T+31T2 |
| 41 | 1+(−4−6.92i)T+(−20.5+35.5i)T2 |
| 43 | 1+43T2 |
| 47 | 1−6T+47T2 |
| 53 | 1+(6−10.3i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−4+6.92i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5−8.66i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1+1.73i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.5−0.866i)T+(−35.5+61.4i)T2 |
| 73 | 1+73T2 |
| 79 | 1+(2+3.46i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−0.5+0.866i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−4+6.92i)T+(−44.5−77.0i)T2 |
| 97 | 1+8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.962461631172528544532136633171, −9.170583782538535838100764164529, −8.439372116882129520433634442255, −7.82308230809700285648835024222, −6.21037750487360919173461094893, −5.55751317488754659758590245493, −4.50194207772694664740192597835, −3.89801382029029491995489873891, −2.59423676419490241974096623353, −1.63577135326902415603914677464,
0.73359836761843542586620506714, 2.54594265830483708551903119224, 3.55765471115212399688304960601, 4.55324535471431792469270831168, 5.54917928030929152353684108601, 6.52719516192561633612746474034, 7.31977588978599633885090909763, 7.981503235449848832805616885141, 8.441415028354372868602428960285, 9.790350235133806941771929506128