L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·6-s + (1.5 + 2.59i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s − 0.999·10-s − 2·11-s + (0.499 − 0.866i)12-s + (2.5 + 4.33i)13-s + 3·14-s + (0.499 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−1 + 1.73i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.223 − 0.387i)5-s + 0.408·6-s + (0.566 + 0.981i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s − 0.316·10-s − 0.603·11-s + (0.144 − 0.249i)12-s + (0.693 + 1.20i)13-s + 0.801·14-s + (0.129 − 0.223i)15-s + (−0.125 + 0.216i)16-s + (−0.242 + 0.420i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.729 - 0.683i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.729 - 0.683i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.871962756\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.871962756\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.5 + 6.06i)T \) |
good | 7 | \( 1 + (-1.5 - 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 13 | \( 1 + (-2.5 - 4.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1 - 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.5 - 4.33i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 - T + 29T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 41 | \( 1 + (-4 - 6.92i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 + (6 - 10.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4 + 6.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 - 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 + (2 + 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-4 + 6.92i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.962461631172528544532136633171, −9.170583782538535838100764164529, −8.439372116882129520433634442255, −7.82308230809700285648835024222, −6.21037750487360919173461094893, −5.55751317488754659758590245493, −4.50194207772694664740192597835, −3.89801382029029491995489873891, −2.59423676419490241974096623353, −1.63577135326902415603914677464,
0.73359836761843542586620506714, 2.54594265830483708551903119224, 3.55765471115212399688304960601, 4.55324535471431792469270831168, 5.54917928030929152353684108601, 6.52719516192561633612746474034, 7.31977588978599633885090909763, 7.981503235449848832805616885141, 8.441415028354372868602428960285, 9.790350235133806941771929506128