L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·6-s − 0.999·8-s + (−0.499 − 0.866i)9-s + 0.999·10-s − 3·11-s + (0.499 + 0.866i)12-s + (2.5 − 4.33i)13-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (−1 − 1.73i)17-s + (0.499 − 0.866i)18-s + (2.5 − 4.33i)19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + 0.316·10-s − 0.904·11-s + (0.144 + 0.249i)12-s + (0.693 − 1.20i)13-s + (−0.129 − 0.223i)15-s + (−0.125 − 0.216i)16-s + (−0.242 − 0.420i)17-s + (0.117 − 0.204i)18-s + (0.573 − 0.993i)19-s + ⋯ |
Λ(s)=(=(1110s/2ΓC(s)L(s)(0.729+0.683i)Λ(2−s)
Λ(s)=(=(1110s/2ΓC(s+1/2)L(s)(0.729+0.683i)Λ(1−s)
Degree: |
2 |
Conductor: |
1110
= 2⋅3⋅5⋅37
|
Sign: |
0.729+0.683i
|
Analytic conductor: |
8.86339 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1110(211,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1110, ( :1/2), 0.729+0.683i)
|
Particular Values
L(1) |
≈ |
1.955179215 |
L(21) |
≈ |
1.955179215 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1+(−0.5+0.866i)T |
| 5 | 1+(−0.5+0.866i)T |
| 37 | 1+(−0.5+6.06i)T |
good | 7 | 1+(−3.5−6.06i)T2 |
| 11 | 1+3T+11T2 |
| 13 | 1+(−2.5+4.33i)T+(−6.5−11.2i)T2 |
| 17 | 1+(1+1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.5+4.33i)T+(−9.5−16.4i)T2 |
| 23 | 1−5T+23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+6T+31T2 |
| 41 | 1+(1−1.73i)T+(−20.5−35.5i)T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+3T+47T2 |
| 53 | 1+(1+1.73i)T+(−26.5+45.8i)T2 |
| 59 | 1+(5.5+9.52i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−3+5.19i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1+1.73i)T+(−33.5−58.0i)T2 |
| 71 | 1+(2−3.46i)T+(−35.5−61.4i)T2 |
| 73 | 1+4T+73T2 |
| 79 | 1+(−1+1.73i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−7−12.1i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−2.5−4.33i)T+(−44.5+77.0i)T2 |
| 97 | 1−16T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.451527764073938227669520685484, −8.778575515497031681308082004788, −7.952092881369026163692617986427, −7.33284778826714492784211051714, −6.38661684263454426976783781788, −5.43264075326392101073570722249, −4.84736269019168766151916501055, −3.40622043192681713601759837762, −2.54712041799946166243148096999, −0.77068668204527063927287674008,
1.60514424115448976317171268497, 2.76778029490586732208383663897, 3.65289029493915044012674541124, 4.58560061388893452527437944368, 5.52512989908406569372306227121, 6.43070490361064058370796256610, 7.48300381395437310381146618550, 8.575555120512153594599415289318, 9.206007835969312755106643406564, 10.18292189491926584971762581825