L(s) = 1 | − 2·2-s + 2·4-s + 4·5-s − 8·10-s + 2·11-s − 4·16-s − 4·17-s + 4·19-s + 8·20-s − 4·22-s + 8·25-s + 14·29-s − 16·31-s + 8·32-s + 8·34-s − 10·37-s − 8·38-s − 2·43-s + 4·44-s − 24·47-s − 49-s − 16·50-s − 2·53-s + 8·55-s − 28·58-s + 16·59-s + 12·61-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s + 1.78·5-s − 2.52·10-s + 0.603·11-s − 16-s − 0.970·17-s + 0.917·19-s + 1.78·20-s − 0.852·22-s + 8/5·25-s + 2.59·29-s − 2.87·31-s + 1.41·32-s + 1.37·34-s − 1.64·37-s − 1.29·38-s − 0.304·43-s + 0.603·44-s − 3.50·47-s − 1/7·49-s − 2.26·50-s − 0.274·53-s + 1.07·55-s − 3.67·58-s + 2.08·59-s + 1.53·61-s + ⋯ |
Λ(s)=(=(12544s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(12544s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
12544
= 28⋅72
|
Sign: |
1
|
Analytic conductor: |
0.799816 |
Root analytic conductor: |
0.945687 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 12544, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7114488872 |
L(21) |
≈ |
0.7114488872 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+pT2 |
| 7 | C2 | 1+T2 |
good | 3 | C22 | 1+p2T4 |
| 5 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 11 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 13 | C22 | 1+p2T4 |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1−10T+pT2)(1−4T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 43 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 59 | C22 | 1−16T+128T2−16pT3+p2T4 |
| 61 | C22 | 1−12T+72T2−12pT3+p2T4 |
| 67 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 71 | C2 | (1−pT2)2 |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1−10T+pT2)2 |
| 83 | C22 | 1+20T+200T2+20pT3+p2T4 |
| 89 | C22 | 1+18T2+p2T4 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.07709379257313501434929525229, −13.21080224703493065311584299987, −13.10435677069817317715597291629, −12.33374275476837685879156416076, −11.41893359581473435188152530904, −11.26811707037460048297898716732, −10.42474346384492172731049067434, −10.00937462620166698547838782373, −9.683924366003053898879873910454, −9.197203073722881335501337628871, −8.540009028955318294445626349058, −8.332459713466063053230675288684, −7.11194844754978421779119417990, −6.84081957360369013901511394052, −6.27061469703395830923553716435, −5.33221791626940470964482586284, −4.84926899829197202780201987783, −3.49326979522568431710341003998, −2.23309122526353656923885425256, −1.51802328772081144901566458296,
1.51802328772081144901566458296, 2.23309122526353656923885425256, 3.49326979522568431710341003998, 4.84926899829197202780201987783, 5.33221791626940470964482586284, 6.27061469703395830923553716435, 6.84081957360369013901511394052, 7.11194844754978421779119417990, 8.332459713466063053230675288684, 8.540009028955318294445626349058, 9.197203073722881335501337628871, 9.683924366003053898879873910454, 10.00937462620166698547838782373, 10.42474346384492172731049067434, 11.26811707037460048297898716732, 11.41893359581473435188152530904, 12.33374275476837685879156416076, 13.10435677069817317715597291629, 13.21080224703493065311584299987, 14.07709379257313501434929525229