L(s) = 1 | − 14·3-s − 294·5-s + 686·7-s − 3.21e3·9-s + 3.49e3·11-s − 1.61e4·13-s + 4.11e3·15-s − 2.92e4·17-s + 3.20e3·19-s − 9.60e3·21-s + 9.36e3·23-s + 3.06e4·25-s + 6.22e4·27-s + 1.84e5·29-s − 1.65e5·31-s − 4.88e4·33-s − 2.01e5·35-s + 2.86e5·37-s + 2.26e5·39-s − 1.16e5·41-s + 2.94e5·43-s + 9.46e5·45-s + 1.01e6·47-s + 3.52e5·49-s + 4.09e5·51-s − 1.39e6·53-s − 1.02e6·55-s + ⋯ |
L(s) = 1 | − 0.299·3-s − 1.05·5-s + 0.755·7-s − 1.47·9-s + 0.791·11-s − 2.04·13-s + 0.314·15-s − 1.44·17-s + 0.107·19-s − 0.226·21-s + 0.160·23-s + 0.392·25-s + 0.608·27-s + 1.40·29-s − 0.995·31-s − 0.236·33-s − 0.795·35-s + 0.928·37-s + 0.611·39-s − 0.264·41-s + 0.564·43-s + 1.54·45-s + 1.42·47-s + 3/7·49-s + 0.432·51-s − 1.28·53-s − 0.832·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.1983291068\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1983291068\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 7 | $C_1$ | \( ( 1 - p^{3} T )^{2} \) |
good | 3 | $D_{4}$ | \( 1 + 14 T + 1138 p T^{2} + 14 p^{7} T^{3} + p^{14} T^{4} \) |
| 5 | $D_{4}$ | \( 1 + 294 T + 11154 p T^{2} + 294 p^{7} T^{3} + p^{14} T^{4} \) |
| 11 | $D_{4}$ | \( 1 - 3492 T + 8600742 T^{2} - 3492 p^{7} T^{3} + p^{14} T^{4} \) |
| 13 | $D_{4}$ | \( 1 + 16170 T + 150099650 T^{2} + 16170 p^{7} T^{3} + p^{14} T^{4} \) |
| 17 | $D_{4}$ | \( 1 + 29232 T + 887067486 T^{2} + 29232 p^{7} T^{3} + p^{14} T^{4} \) |
| 19 | $D_{4}$ | \( 1 - 3206 T + 330079206 T^{2} - 3206 p^{7} T^{3} + p^{14} T^{4} \) |
| 23 | $D_{4}$ | \( 1 - 9360 T + 5917092558 T^{2} - 9360 p^{7} T^{3} + p^{14} T^{4} \) |
| 29 | $D_{4}$ | \( 1 - 184704 T + 39838908966 T^{2} - 184704 p^{7} T^{3} + p^{14} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 165060 T + 48364547678 T^{2} + 165060 p^{7} T^{3} + p^{14} T^{4} \) |
| 37 | $D_{4}$ | \( 1 - 286144 T + 144034750326 T^{2} - 286144 p^{7} T^{3} + p^{14} T^{4} \) |
| 41 | $D_{4}$ | \( 1 + 116760 T + 300275715646 T^{2} + 116760 p^{7} T^{3} + p^{14} T^{4} \) |
| 43 | $D_{4}$ | \( 1 - 294428 T + 533824957446 T^{2} - 294428 p^{7} T^{3} + p^{14} T^{4} \) |
| 47 | $D_{4}$ | \( 1 - 1014132 T + 1229625493438 T^{2} - 1014132 p^{7} T^{3} + p^{14} T^{4} \) |
| 53 | $D_{4}$ | \( 1 + 1396452 T + 2574488431294 T^{2} + 1396452 p^{7} T^{3} + p^{14} T^{4} \) |
| 59 | $D_{4}$ | \( 1 - 2729286 T + 6810337729638 T^{2} - 2729286 p^{7} T^{3} + p^{14} T^{4} \) |
| 61 | $D_{4}$ | \( 1 - 2466954 T + 6172226893562 T^{2} - 2466954 p^{7} T^{3} + p^{14} T^{4} \) |
| 67 | $D_{4}$ | \( 1 + 225176 T + 3298823282406 T^{2} + 225176 p^{7} T^{3} + p^{14} T^{4} \) |
| 71 | $D_{4}$ | \( 1 + 1530312 T + 12745388415342 T^{2} + 1530312 p^{7} T^{3} + p^{14} T^{4} \) |
| 73 | $D_{4}$ | \( 1 - 1143548 T + 2698400643174 T^{2} - 1143548 p^{7} T^{3} + p^{14} T^{4} \) |
| 79 | $D_{4}$ | \( 1 + 7951176 T + 50346024049886 T^{2} + 7951176 p^{7} T^{3} + p^{14} T^{4} \) |
| 83 | $D_{4}$ | \( 1 - 18487854 T + 138806969812134 T^{2} - 18487854 p^{7} T^{3} + p^{14} T^{4} \) |
| 89 | $D_{4}$ | \( 1 + 4652508 T + 76401824909398 T^{2} + 4652508 p^{7} T^{3} + p^{14} T^{4} \) |
| 97 | $D_{4}$ | \( 1 + 26702368 T + 336379902255582 T^{2} + 26702368 p^{7} T^{3} + p^{14} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.12901946216198017916356035632, −12.09530962382839208461993338060, −11.37594317034955767048937867031, −11.21382668475259839810689086168, −10.63577509954571352151369094635, −9.839141919101765871794316423625, −9.125548138001748749433651086992, −8.806466609712738983871051117538, −8.038498039963306987680261224094, −7.76704867530600332101110112990, −6.86373400593312997414474851651, −6.62120412553962566288020607089, −5.49468071433275653237927886524, −5.13193952040899742080904034642, −4.34726773184938723744865737752, −3.91948088197239996186228093203, −2.62017133432497109748652677502, −2.48797451764030991843733013857, −1.13607797658973100539168044006, −0.14862461315812901788118539667,
0.14862461315812901788118539667, 1.13607797658973100539168044006, 2.48797451764030991843733013857, 2.62017133432497109748652677502, 3.91948088197239996186228093203, 4.34726773184938723744865737752, 5.13193952040899742080904034642, 5.49468071433275653237927886524, 6.62120412553962566288020607089, 6.86373400593312997414474851651, 7.76704867530600332101110112990, 8.038498039963306987680261224094, 8.806466609712738983871051117538, 9.125548138001748749433651086992, 9.839141919101765871794316423625, 10.63577509954571352151369094635, 11.21382668475259839810689086168, 11.37594317034955767048937867031, 12.09530962382839208461993338060, 12.12901946216198017916356035632