Properties

Label 2-1120-5.4-c1-0-11
Degree $2$
Conductor $1120$
Sign $0.997 + 0.0685i$
Analytic cond. $8.94324$
Root an. cond. $2.99052$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.63i·3-s + (−2.23 − 0.153i)5-s + i·7-s + 0.328·9-s − 1.24·11-s + 4.20i·13-s + (−0.250 + 3.64i)15-s + 3.39i·17-s + 6.46·19-s + 1.63·21-s + 2.15i·23-s + (4.95 + 0.683i)25-s − 5.44i·27-s − 3.96·29-s + 10.0·31-s + ⋯
L(s)  = 1  − 0.943i·3-s + (−0.997 − 0.0685i)5-s + 0.377i·7-s + 0.109·9-s − 0.374·11-s + 1.16i·13-s + (−0.0646 + 0.941i)15-s + 0.823i·17-s + 1.48·19-s + 0.356·21-s + 0.449i·23-s + (0.990 + 0.136i)25-s − 1.04i·27-s − 0.736·29-s + 1.80·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0685i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0685i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $0.997 + 0.0685i$
Analytic conductor: \(8.94324\)
Root analytic conductor: \(2.99052\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1120} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :1/2),\ 0.997 + 0.0685i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.333536921\)
\(L(\frac12)\) \(\approx\) \(1.333536921\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (2.23 + 0.153i)T \)
7 \( 1 - iT \)
good3 \( 1 + 1.63iT - 3T^{2} \)
11 \( 1 + 1.24T + 11T^{2} \)
13 \( 1 - 4.20iT - 13T^{2} \)
17 \( 1 - 3.39iT - 17T^{2} \)
19 \( 1 - 6.46T + 19T^{2} \)
23 \( 1 - 2.15iT - 23T^{2} \)
29 \( 1 + 3.96T + 29T^{2} \)
31 \( 1 - 10.0T + 31T^{2} \)
37 \( 1 + 6.76iT - 37T^{2} \)
41 \( 1 + 0.131T + 41T^{2} \)
43 \( 1 + 7.40iT - 43T^{2} \)
47 \( 1 - 4.82iT - 47T^{2} \)
53 \( 1 - 10.0iT - 53T^{2} \)
59 \( 1 - 10.9T + 59T^{2} \)
61 \( 1 + 6.33T + 61T^{2} \)
67 \( 1 - 2.65iT - 67T^{2} \)
71 \( 1 + 0.754T + 71T^{2} \)
73 \( 1 - 6.03iT - 73T^{2} \)
79 \( 1 - 14.6T + 79T^{2} \)
83 \( 1 - 14.0iT - 83T^{2} \)
89 \( 1 - 12.6T + 89T^{2} \)
97 \( 1 + 0.914iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.719083030311344402702618136971, −8.861615607491800256126106358911, −7.964311054725694117851497855703, −7.41045137809122897598605450430, −6.69203538277729928321727426175, −5.68375639826399958964507200149, −4.53954529580680138688536212385, −3.61876102259087331397881670833, −2.31768480279854528430991147506, −1.08046439096713055611024755420, 0.76051904040828307288564385906, 2.96693950208420419442696808021, 3.58542445427792752040607136376, 4.72280397031164105487027960232, 5.15879105180176691363170630157, 6.58681468923159314117382433071, 7.58799012780162969530735674772, 8.039554746915273597197866426081, 9.144979207420570175852871518402, 10.05627704733567137109369978014

Graph of the $Z$-function along the critical line