L(s) = 1 | − 1.63i·3-s + (−2.23 − 0.153i)5-s + i·7-s + 0.328·9-s − 1.24·11-s + 4.20i·13-s + (−0.250 + 3.64i)15-s + 3.39i·17-s + 6.46·19-s + 1.63·21-s + 2.15i·23-s + (4.95 + 0.683i)25-s − 5.44i·27-s − 3.96·29-s + 10.0·31-s + ⋯ |
L(s) = 1 | − 0.943i·3-s + (−0.997 − 0.0685i)5-s + 0.377i·7-s + 0.109·9-s − 0.374·11-s + 1.16i·13-s + (−0.0646 + 0.941i)15-s + 0.823i·17-s + 1.48·19-s + 0.356·21-s + 0.449i·23-s + (0.990 + 0.136i)25-s − 1.04i·27-s − 0.736·29-s + 1.80·31-s + ⋯ |
Λ(s)=(=(1120s/2ΓC(s)L(s)(0.997+0.0685i)Λ(2−s)
Λ(s)=(=(1120s/2ΓC(s+1/2)L(s)(0.997+0.0685i)Λ(1−s)
Degree: |
2 |
Conductor: |
1120
= 25⋅5⋅7
|
Sign: |
0.997+0.0685i
|
Analytic conductor: |
8.94324 |
Root analytic conductor: |
2.99052 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1120(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1120, ( :1/2), 0.997+0.0685i)
|
Particular Values
L(1) |
≈ |
1.333536921 |
L(21) |
≈ |
1.333536921 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2.23+0.153i)T |
| 7 | 1−iT |
good | 3 | 1+1.63iT−3T2 |
| 11 | 1+1.24T+11T2 |
| 13 | 1−4.20iT−13T2 |
| 17 | 1−3.39iT−17T2 |
| 19 | 1−6.46T+19T2 |
| 23 | 1−2.15iT−23T2 |
| 29 | 1+3.96T+29T2 |
| 31 | 1−10.0T+31T2 |
| 37 | 1+6.76iT−37T2 |
| 41 | 1+0.131T+41T2 |
| 43 | 1+7.40iT−43T2 |
| 47 | 1−4.82iT−47T2 |
| 53 | 1−10.0iT−53T2 |
| 59 | 1−10.9T+59T2 |
| 61 | 1+6.33T+61T2 |
| 67 | 1−2.65iT−67T2 |
| 71 | 1+0.754T+71T2 |
| 73 | 1−6.03iT−73T2 |
| 79 | 1−14.6T+79T2 |
| 83 | 1−14.0iT−83T2 |
| 89 | 1−12.6T+89T2 |
| 97 | 1+0.914iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.719083030311344402702618136971, −8.861615607491800256126106358911, −7.964311054725694117851497855703, −7.41045137809122897598605450430, −6.69203538277729928321727426175, −5.68375639826399958964507200149, −4.53954529580680138688536212385, −3.61876102259087331397881670833, −2.31768480279854528430991147506, −1.08046439096713055611024755420,
0.76051904040828307288564385906, 2.96693950208420419442696808021, 3.58542445427792752040607136376, 4.72280397031164105487027960232, 5.15879105180176691363170630157, 6.58681468923159314117382433071, 7.58799012780162969530735674772, 8.039554746915273597197866426081, 9.144979207420570175852871518402, 10.05627704733567137109369978014