L(s) = 1 | + 2.54·2-s − 0.893i·3-s + 4.49·4-s − 2.27i·6-s + 6.36·8-s + 2.20·9-s − 4.02i·12-s + 2.48i·13-s + 7.23·16-s + 5.61·18-s + 4.79·23-s − 5.69i·24-s − 5·25-s + 6.32i·26-s − 4.64i·27-s + ⋯ |
L(s) = 1 | + 1.80·2-s − 0.516i·3-s + 2.24·4-s − 0.930i·6-s + 2.25·8-s + 0.733·9-s − 1.16i·12-s + 0.688i·13-s + 1.80·16-s + 1.32·18-s + 1.00·23-s − 1.16i·24-s − 25-s + 1.24i·26-s − 0.894i·27-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)(0.912+0.409i)Λ(2−s)
Λ(s)=(=(1127s/2ΓC(s+1/2)L(s)(0.912+0.409i)Λ(1−s)
Degree: |
2 |
Conductor: |
1127
= 72⋅23
|
Sign: |
0.912+0.409i
|
Analytic conductor: |
8.99914 |
Root analytic conductor: |
2.99985 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1127(1126,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1127, ( :1/2), 0.912+0.409i)
|
Particular Values
L(1) |
≈ |
5.012089921 |
L(21) |
≈ |
5.012089921 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1−4.79T |
good | 2 | 1−2.54T+2T2 |
| 3 | 1+0.893iT−3T2 |
| 5 | 1+5T2 |
| 11 | 1−11T2 |
| 13 | 1−2.48iT−13T2 |
| 17 | 1+17T2 |
| 19 | 1+19T2 |
| 29 | 1+6.70T+29T2 |
| 31 | 1+4.54iT−31T2 |
| 37 | 1−37T2 |
| 41 | 1+12.7iT−41T2 |
| 43 | 1−43T2 |
| 47 | 1−10.6iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1−14.7iT−59T2 |
| 61 | 1+61T2 |
| 67 | 1−67T2 |
| 71 | 1+14.0T+71T2 |
| 73 | 1−17.0iT−73T2 |
| 79 | 1−79T2 |
| 83 | 1+83T2 |
| 89 | 1+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.973345816302181882365291165928, −8.934562156413334514007846932655, −7.45871460866168554735379852737, −7.19962773347397530538165154963, −6.17894013779057622726054391222, −5.51345892862312186846599405438, −4.40015312751536009286051866415, −3.85615029850207714527325454267, −2.58501813721742578294643022206, −1.62042927261895701082694012344,
1.75897450465415513833261066341, 3.10811893878716614086536469966, 3.77014047699622932868807005737, 4.73780615004010974241403511480, 5.30151817176759316305364423517, 6.25972177178299932695338590010, 7.09711631998868157309926536954, 7.898089952528120247314598844739, 9.243693549247054813164598737039, 10.16318742648892212340432778693