L(s) = 1 | + 2.54·2-s − 0.893i·3-s + 4.49·4-s − 2.27i·6-s + 6.36·8-s + 2.20·9-s − 4.02i·12-s + 2.48i·13-s + 7.23·16-s + 5.61·18-s + 4.79·23-s − 5.69i·24-s − 5·25-s + 6.32i·26-s − 4.64i·27-s + ⋯ |
L(s) = 1 | + 1.80·2-s − 0.516i·3-s + 2.24·4-s − 0.930i·6-s + 2.25·8-s + 0.733·9-s − 1.16i·12-s + 0.688i·13-s + 1.80·16-s + 1.32·18-s + 1.00·23-s − 1.16i·24-s − 25-s + 1.24i·26-s − 0.894i·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.912 + 0.409i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.912 + 0.409i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.012089921\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.012089921\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 - 4.79T \) |
good | 2 | \( 1 - 2.54T + 2T^{2} \) |
| 3 | \( 1 + 0.893iT - 3T^{2} \) |
| 5 | \( 1 + 5T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 - 2.48iT - 13T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 29 | \( 1 + 6.70T + 29T^{2} \) |
| 31 | \( 1 + 4.54iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 12.7iT - 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 - 10.6iT - 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 - 14.7iT - 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 14.0T + 71T^{2} \) |
| 73 | \( 1 - 17.0iT - 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.973345816302181882365291165928, −8.934562156413334514007846932655, −7.45871460866168554735379852737, −7.19962773347397530538165154963, −6.17894013779057622726054391222, −5.51345892862312186846599405438, −4.40015312751536009286051866415, −3.85615029850207714527325454267, −2.58501813721742578294643022206, −1.62042927261895701082694012344,
1.75897450465415513833261066341, 3.10811893878716614086536469966, 3.77014047699622932868807005737, 4.73780615004010974241403511480, 5.30151817176759316305364423517, 6.25972177178299932695338590010, 7.09711631998868157309926536954, 7.898089952528120247314598844739, 9.243693549247054813164598737039, 10.16318742648892212340432778693