Properties

Label 2-1127-161.160-c1-0-62
Degree $2$
Conductor $1127$
Sign $0.912 + 0.409i$
Analytic cond. $8.99914$
Root an. cond. $2.99985$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.54·2-s − 0.893i·3-s + 4.49·4-s − 2.27i·6-s + 6.36·8-s + 2.20·9-s − 4.02i·12-s + 2.48i·13-s + 7.23·16-s + 5.61·18-s + 4.79·23-s − 5.69i·24-s − 5·25-s + 6.32i·26-s − 4.64i·27-s + ⋯
L(s)  = 1  + 1.80·2-s − 0.516i·3-s + 2.24·4-s − 0.930i·6-s + 2.25·8-s + 0.733·9-s − 1.16i·12-s + 0.688i·13-s + 1.80·16-s + 1.32·18-s + 1.00·23-s − 1.16i·24-s − 25-s + 1.24i·26-s − 0.894i·27-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.912 + 0.409i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.912 + 0.409i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1127\)    =    \(7^{2} \cdot 23\)
Sign: $0.912 + 0.409i$
Analytic conductor: \(8.99914\)
Root analytic conductor: \(2.99985\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1127} (1126, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1127,\ (\ :1/2),\ 0.912 + 0.409i)\)

Particular Values

\(L(1)\) \(\approx\) \(5.012089921\)
\(L(\frac12)\) \(\approx\) \(5.012089921\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
23 \( 1 - 4.79T \)
good2 \( 1 - 2.54T + 2T^{2} \)
3 \( 1 + 0.893iT - 3T^{2} \)
5 \( 1 + 5T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 2.48iT - 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
29 \( 1 + 6.70T + 29T^{2} \)
31 \( 1 + 4.54iT - 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 12.7iT - 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 - 10.6iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 - 14.7iT - 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 + 14.0T + 71T^{2} \)
73 \( 1 - 17.0iT - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.973345816302181882365291165928, −8.934562156413334514007846932655, −7.45871460866168554735379852737, −7.19962773347397530538165154963, −6.17894013779057622726054391222, −5.51345892862312186846599405438, −4.40015312751536009286051866415, −3.85615029850207714527325454267, −2.58501813721742578294643022206, −1.62042927261895701082694012344, 1.75897450465415513833261066341, 3.10811893878716614086536469966, 3.77014047699622932868807005737, 4.73780615004010974241403511480, 5.30151817176759316305364423517, 6.25972177178299932695338590010, 7.09711631998868157309926536954, 7.898089952528120247314598844739, 9.243693549247054813164598737039, 10.16318742648892212340432778693

Graph of the $Z$-function along the critical line